ecology and environment, inc. CLOVERLEAF BUILDING 3, 6405 METCALF, OVERLAND PARK, KANSAS 66202, TEL. 913/432-9961 BITE: 19 EVEL WITH DO: 100981126899 JAEAK: 1.7 OTHER: AR 5-7-88 07CR International Specialists in the Environment MEMORANDUM TO: Paul Doherty, RPO THRU: Philip Dula, AFITOM FROM: Bob Overfelt, E & E/FIT DATE: May 17, 1988 SUBJECT: Recommendations and HRS considerations for the GARTVET MINE Tailing site in Desloge, Missouri TDD #F-07-8711-039 PAN #FM00616PA Site #Y60 Project #001 Superfund Contact: Gene Gunn The 600-acre Big River Mine Tailings site was for 30 years the repository for mine tailings containing significant quantities of lead, cadmium, and zinc. The site is bounded on three sides by a horseshoe bend of the Big River. This site presents several complex problems including water and wind erosion, and the possibility of leachate from the on-site landfill releasing lead (Pb) and other heavy metals to the ground water and surface water. Past investigations have documented huge influxes of mine tailings into the Big River. Severe water erosion has changed the benthic zone of the river. The river bottom is covered with a layer of mine tailings where it abuts the site and for several miles downstream. The physical state and chemical characteristics of the river bottom have been altered, and elevated Pb levels have been reported in bottom-feeding biota. Vind erosion and airborne dust is also a major problem at this site. In certain areas mine tailings are entering the river via wind erosion. The tailings material is dolomitic sand and silt that is easily suspended in the air. During the reconnaissance this problem was especially apparent: winds were very strong and created a suspended particulate plume that traveled at least a mile over the town of Desloge. Inhalation of this dust, which contains, lead, cadmium, and zinc, could be a potential health hazard. The St. Francois County Environmental Corporation landfill is located on the site. The primary environmental concern about operating the landfill in the lead, cadmium and zinc-laden mine tailings is the acidic 40108641 SUPERFUND RECORDS Big River Mine Tailings Recommendations and HRS Considerations nature of typical landfill leachate. nature of typical landrill leachate. The potential for leachate from the landfill to transport these heavy metals into the ground water and monitoring walls described around surface water sources is high. Monitoring wells were installed around the landfill in 1987. Samples have been taken from these walls but an surface water sources is night monitoring wells were installed around alutical results have not been received. Surface water sources is night monitoring wells were installed around the monitoring wells but analytical results have not been received. Joe Minerals Corporation and the Desloge Tailings Task Force made a genuine, concerted effort to stabilize the tailings pile. have made a genuine, concerted effort to stabilize the tailings pile. This effort continues. Because this site is so immense, more stabilization and work force to maintain and work foward etabilization Desloge Tailings Task Force to maintain and work toward stabilization Desloge Tallings Task Force to maintain and work toward stabilization should be encouraged. Their maintenance program has prevented the ocatal stabilization arosional avente since 1985. This is a notable should be encouraged. Their maintenance program has prevented the occurrence of catastrophic erosional events since 1985. This is a notable currence of catastrophic erosional events since 1985. This is a notable accomplishment, considering the relative instability and size of the notation of the landfill have not been sufficiently evaluated or fully characon-site landfill have not been sufficiently evaluated or fully charac- An HRS score of 58.4 has been calculated for the Big River Mine Tailings site. Because of the nature of the tailings material, its location on the Big River, and the on-site landfill, all contamination Observed releases were ecored for the location on the Big Kiver, and the on-site languist, all contamination routes are a major concern. Observed releases were scored for the source of 10 0 and 55 % recognitivate surface water and air coutes with scores of 10.9 and 55.4, respectively. The ground water routes with scores or 10.9 and 33.4, respectively. the direct contact route A score of 50 was calculated for The FIT recommends that a site inspection be performed to establish whether wind erosion (with its related suspended particulate problem) is whether wind erosion (with its related suspended particulate problem) is creating a health hazard and to determine whether the landfill is remaind the determinate the landfill is remaind to the could not be successful. creating a nearth nazard and to determine whether the Landrill is releasing leachate that could potentially contaminate the ground water and surface water. Hi-vol air monitoring should be implemented to determine surface water. MI-VOI air monitoring should be implemented to determine particulates and lead content in ambient air on site, in the evicting monitoring value Desloge, and at a background location. The existing monitoring wells should be sampled to determine whether heavy metals and landfill leach. should be sampled to determine whether neavy metals and languill leached have contaminated the ground water. According to Missouri Depart. ate have contaminated the ground water. ment of Natural Resources officials, according to Missouri Departement of the Big River. If so, samples should be collected from the considered a high priority. point of entry. This work should be considered a high priority. Ground Water Route Several communities in the site area rely on the Bonneterre and the lead denotite (Calena Phs) that were mined Recause Ph has limited the lead deposits (Galena PbS) that were mined. Because Pb has limited solubility in alkaline water, high concentrations of Pb in the water are generally not a problem (Ref. 25). Because the aquifer is located in a Big River Mine Tailings Recommendations and HRS Considerations Page 3 dolomitic formation, the ground water is alkaline. Therefore, the potential for Pb-contamination of the ground water is reduced significantly. Although there is justified concern about having the St. Francois County Landfill located in the tailings pile. Landfill leachate tends to be acidic. If the landfill leached a considerable amount of acidic material then this could release the Pb contained in the mine tailings. Because the permeability and porosity of the tailings are high this potentially released Pb could migrate into the ground water and then into the Big River. The landfill creates potential for ground water and surface water contamination. #### Surface Water Route Because the Big River Mine Tailings site is adjacent to the Big River the potential for surface water contamination exists. The drainage from the site flows directly into the Big River. Results of studies on the chemical characteristics of the water in Big River show that the Pb content is elevated around mine tailings piles and downstream when compared to background samples. Most samples analyzed were below the 50 ug/l Maximum Contaminant Level, which is consistent with the low solubility of Pb in alkaline water. Though the benthic zone of the Big River is lined with mine tailings, the high pH of the water controls Pb solubility. # Air Route The tailings at the Big River Mine Tailings site are a ground, dolomitic powder containing lead, cadmium, and zinc. The tailings are easily airborne and carried off site. This creates a problem with total suspended particulates as well as lead-laden particulates that also are suspended in this material (Photo C-1, Appendix C). #### Receptors The principal receptors of the lead contamination from the heavy metal contamination are: - o people who breath the lead-laden suspended particulates. Approximately 4,000 people in Desloge are located within a mile of the site; - o bottom-feeding fish of the Big River; and - o those who consume the contaminated bottom-feeding fish of the Big River. Big River Mine Tailings Recommendations and HRS Considerations Page 4 # Direct Contact The employees of the on-site landfill are constantly exposed to the mine tailings while at work. Also, many people use the tailings piles for recreational purposes such as riding all terrain vehicles. This activity creates dust and increases wind erosion. Preliminary Assessment Big River Mine Tailings Desloge, St. Francois County, Missouri TDD #F-07-8711-039 PAN #FM00616PA Site #Y60 Project #001 Submitted to: Paul E. Doherty, RP0 Task Leader: Robert Overfelt, E & E/FIT Superfund Contact: Gene Gunn Date: May 17, 1988 # TABLE OF CONTENTS | Section | | The state of s | Page | . * | |----------
--|--|--------|-------| | 1 | INTRODUCTION | • | 1-1 | - | | | THE DESCRIPTION AND UTOMODE | Elimet, in the graph of the control | 0 1 | | | 2 | | Y | 2-1 | | | | | | 2-1 | | | | 2.2 SITE HISTORY | | 2~1 | | | | 2.3 STABILIZATION EFFORTS. | · · · · · · · · · · · · · · · · · · · | 2-6 | | | | 2.4 SITE CONTACTS | | 2-14 | | | 3 | WASTE CHARACTERISTICS | | 3-1 | ÷ - | | 4 | PAST INVESTIGATIONS | | 4-1 | 14.5 | | 4 | | TER AND SEDIMENT | 4-1 | | | | | | | | | | | A | 4-4 | | | | | AS AGRICULTURAL TIME | 4-5 | | | | 4.4 LEAD IN DUST FROM TAIL | INGS PILE | 4-5 | | | | The state of s | The state of s | | | | 5 | PHYSTCAL SETTING | | 5-1 | | | - | | АРНҮ | 5-1 | | | | 5 2 TODOCDADUV AND DRATNACE | E | 5-2 | | | | | | | - | | | 5.3 \$01LS | | 5-2 | | | | | • | 5-3 | | | | 5.5 HYDROGEOLOGY | ************************************** | 5-5 | - 1 | | 6 | SUMMARY AND CONCLUSIONS | '- '- '- '- '- '- '- '- '- '- '- '- ' | 6-1 | | | 7 | REFERENCES | The second secon | 7-1 | F | | | e e e e e e e e e e e e e e e e e e e | | | | | | · · | • | | | | | APPEND | ICES | | • | | Appendix | | | Page | | | | | S. F. Francisco | | | | A | UPDATED EPA FORM 2070-13 | | A-1 | | | В | WELL_LOGS | | B-1 | | | | ere e verde e e e e e e e e e e e e e e e e e e | | | | | С | PHOTOGRAPHS | | C-1 | | | D | v — v Araya i | ALS IN DESLOGE TAILINGS | C-1 | 11.12 | | ט | SAMPLE RESULTS OF HEAVY HET. | VPS IN DESPOSE INTERIOS | C-1 | | | | | g d ec _{om} | | | | | | en e | | | | | HIST OF F | IGURES - | | | | | | | | · | | Figure | - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 | To the Charles of | Page - | ٠٠٠ | | | Fire and the second | | | | | 1 | Site Location Map | · · · · · · · · · · · · · · · · · · · | 2-2 | | | | · 🥷 🕌 | | | 2 | | 2 | Site Map | • | 2-3 | | | _ | ** | | - | • | | | and the second second | | | |--------|--|---|------| | | LIST OF F | IGURES (CONT) | | | Figure | | | Page | | 3 | Major Erosional Features | On-Site | 2-7 | | 4 | Where Mine Tailings Reac | h the Big River | 2-9 | | 5 | Sample Locations on the
Fisheries Research Lab | Big River from National Report | 4-2 | | 6 | Generalized Stratigraphi | c Column | 5-4 | | Table | | | Page | | 1 | Metal Analyses of Tailin
Distilled Water, EDTA, | g Samples Extracted with and HNO ₃ | 2-11 | | 2 | Site History and Stabili | zation Efforts | 2-13 | | 3 | - N | Water Samples Collected in the | 4-3 | | 4 | | Sediment Samples Collected in | 4-4 | | 5 | and the same of th | Fish Samples Collected in the | 47 | A Brown and r s The second secon Service of the servic #### SECTION 1: INTRODUCTION The Ecology and Environment, Inc., Field Investigation Team (E & E/FIT) was tasked by the U.S. Environmental Protection Agency (EPA) to conduct a Preliminary Assessment (PA) of the Big River Mine Tailings site near Desloge, Missouri. The tasks authorized under Technical Directive Document (TDD) #F-07-8711-039 were to gather and review background information, conduct a site reconnaissance, prepare a preliminary assessment report, and submit an updated EPA Preliminary Assessment Form 2070-12. A site reconnaissance was conducted by E & E/FIT member Robert Overfelt on January 25, 1988. Site conditions were documented with photographs (Appendix D). The site was brought to the attention of the Region VII EPA because mine tailings containing lead and other heavy metals were entering the Big River due to erosion. A high potential for heavy metals contamination of the Big River exists at this site. # SECTION 2: SITE DESCRIPTION AND HISTORY ### 2.1 SITE DESCRIPTION. The Big River Mine Tailings site is located in St. Francois County approximately one-half mile northwest of Desloge, Missouri (Figure 1). This area of southeast
Missouri is known as the "Old Lead Belt" and was formerly a major producer of lead. The coordinates of the approximate center of the site are 37° 53′ 11".4 north latitude and 90° 33′ 00".0 west longitude (Ref. 1). The Big River Mine Tailings site covers approximately 600 acres (Figure 2). It consists mainly of mine tailings ranging from 0 to 100 feet deep (Ref. 2). A sanitary landfill and landfill office are located on the south end of the site. The landfill is operated by the St. Francois County Environmental Corporation which has a state permit to fill approximately 60 acres (Ref. 3). There are six monitoring wells installed around the landfill and the well logs are included as Appendix B. The majority of the site is situated within a horseshoe meander of the Big River (Figure 2). # 2.2 SITE HISTORY The 600-acre Big River Mine Tailings site is the result of 30 years (1929 to 1958) of stockpiling lead mining wastes from a mill which was located just west of the Desloge City limits (Ref. 4). After processing, the tailings were transported to the site via a slurry pipeline. Tailings ponds were formed when the tailings settled out. The St. Joe Minerals Corporation owned the tailings site until 1972 when it donated the majority of the site, 502 acres, to St. Francois County (Ref. 4). Approximately 100 acres, which is located directly east of the present-day landfill, is still owned by St. Joe Minerals. An immense mine tailings pile, estimated between 75 and 125 feet high, is located on the St. Joe Minerals property (Ref. 3) (Figure 3). WASTE SITE TRACKING #: MOO618 PREPARED BY: R. OVERFELT ECOLOGY & ENVIRONMENT FIT MARCH 1988 BOURCE: USGS 7.5' BONNE TERRE & FLAT RIVER, MO QUADS. 1982 FIGURE 2: SITE MAP After acquisition of the 502 acres, St. Francois County leased the land to the St. Francois County Environmental Corporation (SFCEC) (Ref. 5). In 1973 the non-profit SFCEC established a sanitary landfill on approximately 60 acres of the southwest section of the mine tailings pile (Ref. 2 and 3). Bryant AuBuchon, manager of the SFCEC landfill, stated that the landfill excepts typical residential refuse and debris and that the refuse is not separated into specified cells (Ref. 5). Hudwalker and Associates, Inc., a consulting engineering firm located in Farmington, Missouri, has administered landfill operations and maintenance of the tailings pile for the last three years (Ref. 3). Marvin Hudwalker of Hudwalker and Associates, Inc., was present during the reconnaissance. He stated that mine tailings were used as daily cover on the trash and that when a cell is filled a one-yard thick clay cover is applied and grass is planted. During the reconnaissance, the filled landfill cells were noted to have a continuous cover and the area was relatively clean. A review of the Missouri Department of Natural Resources (MDNR) files regarding the landfill revealed that the landfill operation was very inadequate before Hudwalker and Associates took over administration. The facility was cited numberous times for various violations. Photographs from repeated inspections of the landfill depict large amounts of refuse with no cap or vegetated cover (Ref. 9). According to a 1977 University of Missouri-Columbia report, the area experienced a severe storm event involving the section of the tailings pile known as Gap "A" which is located adjacent to the Big River on the southeast side of the horse-shoe bend (Figure 3). This portion of the mine tailings pile became supersaturated and collasped, releasing its contents into the Big River (Appendix D, Photo C-3). Although the exact quantity of mine tailings that washed into the river is not known, estimates suggest that the quantity may have been as much as 50,000 cubic yards (Ref. 3) (Figure 3). When the MDNR discovered this catastrophic event, they requested that the Environmental Protection Agency Surveillance and Analysis team (SVAN) conduct an extensive investigation of the Big River. The SVAN conducted this survey in late 1977, and the general findings, based on aquatic population density and diversity, were that the Big River was degraded by the mine tailings that entered the river. The degradation was mainly the result of physical changes in the benthic zone of the river rather than chemical toxicity of the river water (Ref. 2). In 1980 the Missouri Department of Conservation submitted evidence that some fish sampled downstream from the tailings pile contained elevated levels of lead (Ref. 2). This report concluded that the high concentrations of lead were found in the edible tissue of fish found in the Big River downstream from the location where mine tailings had entered the river during the rupture in 1977. The highest concentration found, 1.30 ppm, was found in sample nine from four golden redhorse fish collected immediately downstream from the collasped Desloge tailings pile (Ref. 6). The World Health Organizations (WHO) dietary limit for lead is 0.3 ppm (Ref. 6). As a result of these findings, the state of Missouri issued a press release cautioning local residents not to eat bottom-feeders taken from a 50-mile stretch of the Big River from the city of Leadwood (near the Desloge tailings pile) downstream to Washington State Park (Ref. 7). Since 1980 numerous research projects have focused on the impact of the mine tailings piles in the Old Lead Belt on the Big River. Results of various studies of the mine tailings and their effect on the Big River will be presented in Section 3. By December 1981 St. Joe Minerals Corporation, under a cooperative agreement with the state of Missouri, began remedial action on the pile in an effort to fill the erosional gaps and stabilize the pile (Ref. 8). Many smaller erosional events have been documented since the massive release in 1977. Section 2.3 will detail the past and present erosional problems as well as the efforts undertaken, to stabilize the piles. In the spring of 1985 the Desloge Tailings Task Force was organized to deal with the existing problems of the Desloge Mine Tailings site. The Task Force, organized by St. Joe Minerals, consisted of representatives from St. Joe Minerals, the landfill, and MDNR, as well as local officials and others. Specific activities of the Task Force are detailed in Section 2.3. The Task Force focused on three primary objectives: - 1. Provide adequate site supervision to ensure proper repair and maintenance. - 2. Develop and implement short-term measures to stabilize the site. - 3. Develop a long-term stabilization plan for the site. Landfill authorities requested a permit from the state of Missouri to expand operation into 200 additional acres of the tailings pile. In January 1987, as a result of this proposed expansion, the MDNR requested that six monitoring wells be installed around the existing landfill to determine whether the ground water contained significant quantities of landfill leachate (Ref. 3) (Figure 2). The well logs for these six monitoring wells are included as Appendix B. Water samples have been taken from the wells but the results of the analyses have not been received. #### 2.3 STABILIZATION EFFORTS After the massive release of mine tailings into the Big River in 1977, efforts to stabilize this mine tailings pile were initiated. A number of remedial efforts have been accomplished. The reports from several agencies detail the problems that exist at the site and presnet solutions to these problems. A comprehensive report prepared in 1980 for MDNR by the University of Missouri Columbia (UMC) College of Engineering characterizes the major environmental concerns at the site including water and wind erosion and the apparent hazard of constructing a landfill in the tailings pile. The UMC investigation concluded that the tailings pile contained numerous points where tailings are entering the Big River due to water erosion. The UMC team designated six gaps, which were labeled alphabetically around the pile starting on the southeast side (Figure 3). Erosional gaps G, H, and I developed after the report was completed and have been labeled as they occurred. FIGURE 3: MAJOR EROSIONAL FEATURES The original drainage structures placed by the mining company are illustrated in Photo C-14 (Appendix D). These concrete drainage structures were constructed to drain the water from off the tailings pile. During the E & E/FIT site reconnaissance, it was noted that drainage structure #1 near Gap A was totally collapsed and was no longer functional. According to the UMC report, drainage structure #1 became blocked and this blockage led to the massive erosion which occurred in 1977 at Gaps A and B. The UMC report recommended that the major erosional gaps be filled with a suitable fill material and the area reshaped to reduce further erosion. Further, the report suggested that the drainage structure located near Gap A be altered to minimize the chance for overflow (Ref. 4). Wind erosion and the associated blowing of lead-laden dust is also a major concern (Appendix D, Photo C-1). There the tailings pile reaches the river bank in two area (Figure 4). During the FIT reconnaissance, it was noted areas #1 and #2 that the wind was eroding the tailings over the steep incline. As tailings accumulate, and their angle of repose is exceeded, they collaspe and fall into the river (Photo C-2). The major problem at area #2 is the river undercutting the bank, which eventually could lead to a collaspe of the tailings in the area into the river (Photos C-12, C-13). Wind erosion is generally from west to east, which produces a continuous movement of the tailings toward the east. Because the tailing are a very fine, dolomitic sand or silt sufficient wind velocity creates a tailings dust cloud. During the site reconnaissance this occurrence was observed to be a serious problem (Photo C-1). A dust plume originating from the site was transporting dust at least one mile to the southeast. Wind speeds on that day included gusts up to 35
miles per hour. The UMC report recommended that a study be undertaken to assess the possibility for plant growth to be established on the pile to control wind erosion. Plant life is very difficult to establish in this environment for several reasons: - o A serious nutrient deficiency exists in the tailings; - o Wind erosion prevents establishment of seedlings; - o Moisture cannot be retained, especially on the slopes, due to the porous nature of the tailings; and - o The lead content of the tailings may cause plant sterilization, preventing reseeding by existing plants. FIGURE 4: OBSERVED ENTRY POINTS OF MINE TAILINGS TO BIG RIVER Because of these deleterious conditions, natural plant growth on the pile is almost non-existent. This experimentation was suggested as an attempt to establish a method for maintaining a vegetative cover. The UMC report considers the landfill on site to be a serious potential problem. The liquid runoff (leachate) that results from a landfill is typically low pH and contains large quantities of organic material. If these conditions exist it is very possible that heavy metals could be leached from the tailings and transported to the Big In the UMC report, tests were conducted by extracting mine tailings with nitric acid, distilled water, and ethylenediaminetetra-The nitric acid extraction represents total acetic acid (EDTA). quantity of metals in the tailings. The distilled water extraction represents what is released by the movement of rain water through the The EDTA extraction represents the potential for extraction tailings. by landfill leachate (Table 1). Metals that are extracted by landfill leachate would also be chemically bound by organics and might remain in solution after entering a body of water such as the Big River. During the reconnaissance the area where landfilling was complete and soil cover was applied was observed to be much more stable than the adjacent mines tailings. However, the benefits of soil cover are offset by the potential for landfill leachate to release lead and other metals from the tailings (Ref. 4). These three problems of water erosion, wind erosion, and the land-fill are considered the primary concerns at the Desologe tailings pile. When the UMC report was submitted in 1980, no remedial action had begun. However, St. Joe Minerals Corporation began remedial activities in 1981 that are continuing. In December 1981 St. Joe Minerals Corporation began filling Gaps A, B, C, and D. This remedial action was completed in January 1982 (Ref. 8). C. G Mattson, Project Manager, St. Joe Minerals Corporation, provided a summary of the remedial activity and maintenance performed since the initial work on Gaps A, B, C and D. Inspections have been performed at least once per month from December 1981 to the present by St. Joe Minerals and/or the engineer for the landfill. Inspections also are made after or during heavy rainfall Table 1 Metal Analyses of Tailings Big River Mine Tailings Desloge, Missouri University of Missouri-Columbia College of Engineering | ACCUPATION OF | g dry) | · ; | | Sa | nd (ug/g d | ry) | |--|--------|-----------|------------------|-------|------------|-------| | Charles Land | | | To the second | | | : | | 100 | Water | EDTA | HNO ₃ | Vater | EDTA | HNO | | हर्मान्स् नाम्ब्रह्मात् क्षेत्रका नामक्ष्य | 20 | 2,200 - 2 | ,400 | 26 | 720 | 850 | | April (1931) Propins | N.D. | 3.2 | 14 | N.D. | 5.8 | 25 | | A Salufolijuskieministi. | 3.4 | 220 | 680 | 14 | -230 | 1,000 | | | | | *: * *= · _ , | ; | | | N.D. is not detected. Water: Represents rainfall through tailings. EDTA: Ethylenediaminetetraacetic acid and represents landfill leachate through tailings. HNO3: Represents total metal content in tailings. Ref. 4 . The inspections consist of confirming that all drainage strucare functional and that no observable defects have occurred in the ing berm. n April 1983 two small gaps, designated Gaps G and H were formed nusually heavy rainfall overtopped the retaining berm (Photo C-8). aps were filled and a-22-inch steel pipe drainage structure was in each. In October 1984, 1,500 feet of fence was placed along ase of the chat pile and the area north of the fence was seeded, ized, and covered with straw mulch. This fence was built to roe a dune formed by a wind fence placed in 1980. In April 1985 Gap "I" was formed when heavy rainfall topped the retaining berm. The gap was filled and a 22-inch steep pipe drainage structure was established. At the same time, 2,000 feet of snow fence was placed in the area of the break to build up the retaining berm with wind-blown material. The open channel spillway cut that drains the pond area was deepened and a diversion ditch was cut across natural ground to keep water from flowing into the Gap "I" area (Photo C-10 and C-11). A diversion dike was built through natural ground so that water diverted by the landfill operations would not flow into Gap "E" (Photos C-15, C-16 and C-17). In October 1985, the approximately 20 acres of tailings that comprose the major portion of the Gap "I" drainage area were fertilized and seeded. During the FIT reconnaissance it was apparent that the vegetation in this particular area was growing well and had stabilized the area. It should be noted that this area is flat and stable relative to other steep sloping, dune-like areas that also exist on the tailings pile (Photo C-9). In March 1986, 10,000 Black Locust trees were planted on the Desloge tailings area, some 7,500 of them were planted in the Gap "I" drainage area that was sown in October 1985. During the reconnaissance it was apparent that the seeding of Black Locust in this area was very successful. Some trees were approximately 12 feet tall (Photo C-9). In February 1987, 15,000 Black Locust trees were planted on the approximately 15 acres of tailings that form the drainage area for Gap "G" (Photos C-6 and C-7). The latest activity was in September and October 1987 when some 20,000 feet of wind fencing was installed on the upper portion of the tailings area. During the FIT reconnaissance it was noted that much of this fencing was damaged or blown down due to a recent storm. Reconstruction of the fencing, as well as reinforcement, are planned. It was obvious that the wind fencing was controlling some movement of the sand-like material, but it is ineffective during stronger winds (Photos C-4 and C-5) (Ref. 8). In 1985 the Desloge Tailings Task Force contracted the engineering firm Burns and McDonnel, Inc., to develop a long-term stabilization plan. The investigation and report was funded 25 percent by the Table 2 Site History and Stabilization Efforts uttigeregeler. Uttigeregeler and the second at the second | Date | | Chronology of Pertinent Site Events | |--------|---|---| | 1929-1 | 1958- | Mining occurred and tailings were deposited in slurry form. | | 1973 | | St. Joe Minerals Corporation donated 502 acres to St. Francois County. St. Francois County leased the land to the St. Francois County Environmental Corporation which opened the existing landfill. | | 1977 | | Collaspe of tailings in Gaps A and B; SVAN reports degradation of Big River due to influx of tailings during collaspe. | | 1980 | | Missouri Department of Conservation determined elevated Pb levels in bottom-feeding fish and issued a press release cautioning local residents not to eat these fish. | | 1981 | Programme Control of the | St. Joe Minerals began remedial activity in an attempt to stabilize the tailings. | | 1983 | | Gaps "G" and "H" were formed by overtopping of the retaining berm. | | 1984 | | 1,500 feet of wind fencing installed. | | 1985 | | Desloge Tailings Task Force was organized Gaps "I" was formed by overtopping
Burns & McDonnel long term stabilization plan 20 acres near Gap "I" were seeded, and appear to be growing well. | | 1986 | rians. | 10,000 Black Locust trees planted near Gap "I". | | 1987 | | Monitoring wells installed around landfill. Some 15,00 Black Locust trees planted near Gap "G". 20,000 feet o wind fencing installed. | See Asses landfill corporation and 75 percent by St. Joe Minerals. The Burns and McDonnel proposal was highly criticized because it included creating several ponds on the tailings pile to control surface runoff (Ref. 10). Because of the proven instability of the tailings, the plan to create ponds on the pile was not considered a satisfactory solution. The chronology of the significant stabilization efforts is summarized in Table 2. In April 1987 the Soil Conservation Service proposed some stabilization plans for the site to the Desloge Mine Tailings Task Force. They suggested diverting the surface drainage away from critical erosion areas and planting some test plots to determine what methods might be best for revegetation (Ref. 11). Current plans are to carry out revegetation test plot experiments in an attempt to determine what plants and planting methods are best suited to the mine tailings. # 2.4 SITE CONTACTS BIG RIVER MINE TAILINGS - 1. Marvin Hudwalker Hudwalker and Associates, Inc., Consulting Engineers Professional Engineer Farmington, Missouri (314) 756-6775 - 2. Bryant AuBuchon St. Francois County Environmental Corporation Landfill Manager Desloge, Missouri (314) 431-4768 - 3. C. G. Mattson St. Joe Minerals Corporation Project Manager Irvine, California (714) 975-5269 - 4. Jim Burris Missouri Department of Natural Resources Director Poplar Bluff Regional Office Poplar Bluff, Missouri (314) 785-0832 - 5. Gene Gunn U.S. EPA Superfund Contact Kansas City, Kansas (913) 236-2856 #### SECTION 3: WASTE CHARACTERISTICS It has been determined that the mine tailings located at the Big River Desloge Tailings pile contain significant amounts of lead, cadmium and zinc (Ref. 10). The tailings from the pile are migrating into the river and ambient air via water and wind erosion. Therefore, it is possible that these heavy metals constituents may be contaminating the river and the air. This section will discuss the three heavy metals of concern (lead, cadmium, and zinc) their characteristics, potential hazards, and relevant EPA Maximum Contaminant Levels (MCL). Lead exists in nature mainly as lead sulfide (galena). Other common forms are lead carbonate (cercissite), lead sulfate (anglestie) and lead chlorophosphates (pyromorphite).—Stable complexes result from the interaction of lead with the sulflydryl, carboxyl, and amine coordination site found in living matter. The toxicity of lead in water is affected by pH, hardness, organic materials, and the presence of other metals. The aqueous solubility of lead ranges from 500 ug/l in soft water to 3 ug/l in hard water (Ref. 13). Lead is a toxic metal that tends to accumulate in the tissues of humans and other animals. Although seldom seen in the adult population, irreversible damage to the brain is a frequent result of lead intoxication in children. This most commonly results from ingestion of lead-containing paint found in older homes. The major toxic effects of lead include anemia, neurological dysfunction, and renal impairment. The most common symptoms of lead poisoning, which usually develop slowly, are anemia, severe intestinal cramps, paralysis of nerves (especially the arms and legs), loss of appetite, and fatigue. The Maximum Contaminant Level (MCL) established for lead in drinking water is 50 ug/l (Ref. 14). The National Ambient Air Quality Primary Standard for lead in the air in a calendar quarter is 1.5 ug/m³ (Ref. 15). Cadmium occurs mainly as a sulfide salt, frequently in association with zinc and lead ores (Ref. 13). Accumulation of cadmium in soils in the vicinity of mines and smelters may result in high local concentrations in nearby waters. Cadmium is deposited and accumulated in various body tissues. Cadmium may function in or may be an etiological factor for various human pathological processes including testicular tumors, renal dysfunctions, hypertension, arteriosclerosis, growth inhibition, chronic diseases of old age, and cancer (Ref. 13). The MCL established for cadmium in drinking water is 10 ug/l (Ref. 14). Zinc is usually found naturally as a sulfide and if is often associated with other metals, especially lead, copper, cadmium and iron. It is used in galvanizing processes and in preparation of alloys. Zinc is essential and beneficial in human metabolism. Community water supplies tested have contained 11 to 27 mg/l without harmful effects. The toxicity of zinc compounds to aquatic animals is modified by environmental factors. An increase in temperature and reduction in dissolved oxygen increases the toxicity of zinc for fish. Toxic concentrations of zinc compounds cause adverse changes in the morphology and physiology of fish (Ref. 13). The final secondary MCL established for zinc is 5,000 ug/l (Ref. 14). No primary MCL for zinc has been established. In a study prepared by the University of Missouri Rolla, the Desloge tailings pile was sampled extensively (77 samples were taken) for its lead, cadmium, and zinc content. Values for lead range from 826 to 6,200 ug/g with a mean of 2077 ug/g; cadmium ranged from 6.8 to 78.6 with a mean of 26 ug/g. Zinc ranged from 233 to 3,990 ug/g with a mean of 1,226 ug/g. See Appendix D for complete sample results (Ref. 12). #### SECTION 4: PAST INVESTIGATIONS Numerous investigations regarding the effects of mine tailings on the Big River have been completed since the massive erosional event in 1977. This section will address the significant results of this research. # 4.1 METALS IN BIG RIVER WATER AND SEDIMENT In a report submitted by the National Fisheries Research Laboratory the metals content in river water and sediment was measured at different locations along the Big River (Figure 5). The Irondale and Mineral Fork sample locations were considered control areas while Desloge, Washington State Park, and Brown's Ford sites are 5 miles, 37 miles and 60 miles, respectively downstream from the Desloge Mine Tailings pile. Water sampling was done during low, medium, and high flow. Total metals and dissolved metals were measured for lead (Pb), cadmium (Cd) and zinc (Zn). The highest total Pb (0.68 mg/l) was found at Washington State Park and the highest dissolved Pb (0.026) occurred at Brown's Ford (Table 3). The dissolved Pb concentrations were all below the 0.05 mg/l MCL for Pb. Cd and Zn concentrations were all within established MCLs for these compounds. Sediment samples were collected from corresponding locations on the Big River. Total sediment Pb concentrations were highest at Desloge (2215.0 ug/g) and tended to decrease with distance downstream. This value is similar to the Pb content found in the tailings at the Desloge pile (Appendix D). Total Pb concentration was lowest (49.6 ug/g) at Irondale. Concentration at Mineral Fork were substantially higher than at Irondale, though were lower here than at other locations. This is probably attributable to the past Pb mining or on-going barite mining activities in the Mineral Fork watershed. These sampling results show how the mine tailings had affected the benthic zone of the Big River at the Desloge mining pile and for several miles downstream (Table 3) (Ref. 16). WASTE SITE TRACKING #: MOO616 PREPARED BY: R. OVERFELT ECOLOGY & ENVIRONMENT APRIL 1988 SOURCE: REFERENCE 18 Table 3 Metals Concentrations in Water Samples Collected in the Big River Big River Mine Tailings, Desloge, Missouri | ====== | ======================================= | #======= | | | **** | 252222 | |----------|---|----------|--|--|-------|---------| | | | | e e e e e e e e e e e e e e e e
e e e | 1. | | | | Location | r Flow | | Pb | Cd | | n · | | Stage | (CFS) | D | T | D T | D | T | | | The second second | | | | | | | Mineral | Fork | | internacional de la compansión de la compa
La compansión de la compa | • | 15 · | 7 = | | Low | 29.6 | 0.005 | 0.009 - 0 | .001 0.001 | <0.01 | <0.01 | | Med. | 160.0 | 0.006 | 0.005 0 | .001 0.001 | <0.01 | <0.01 | | High | 505.0 | 0.005 | 0.009 0 | .001 0.001 | <0.01 | <0.01 | | Brown's | Pord To | | | | | fitter. | | Low | 95.6 | 0.005 | 0.043 0 | .001 0.001 | 0.02 | 0.03 | | Med. | - 650.0 | 0.007 | | .001 0.001 | 0.01 | | | | 11900.0 | 0.026 | | .001 0.001 | 0.05 | *** | | | | | I | | | • | | Washing | ton | | | : | | | | State Pa | ark 🦠 👊 | | ************************************** | | | - | | Low | - 70.2 | 0.009 | and the second of o | .001 <0.001 | 0.01 | 0.04 | | Med. | 490.0 | <0.005 | · · · · · · · · · · · · · · · · · · · | .001 <0.001 | 0.01 | 0.07 | | High | 11395.0 | 0.021 | 0.680 <0 | .001 <0.004 | | 0.22 | | | | | | | | | | Desloge | 24.1 | | entre de la companya | | | | | Low | 45.3 | 0.020 | | .002 0.004 | 0.31 | 0.36 | | Med. | 298.0 | 0.010 | 0.085 0 | | 0.06 | 0.11 | | High | 932.0 | 0.012 | 0.110 0 | .002 0.004 | 0.10 | 0.16 | | | - 2-2-1-1 | | and the state of t | | | | | Irondal | | 0.005 | 0.005 | 004 | 40.04 | 01 | | Low | 7.1 | 0.005 | | .001 0.001 | <0.01 | <0.01 | | Med. | 160.0 | 0.005 | | .001 0.001 | <0.01 | <0.01 | | High | 300.0 | 0.005 | 0.005 - 0 | .001 0.001 | <0.01 | <0.01 | | ======= | | :======= | | ====================================== | | | Reporting unit is mg/l. NOTE: CFS = Cubic feet per second. D = Dissolved Metals; T = Total Metals. Source: National Fisheries Research Laboratory Report (Ref. 16). Table 4 Metals Concentrations in Sediment Samples Collected in the Big River Big River Mine Tailings, Desloge Missouri | Location | Pb Cd | Zn | |-----------------------|-----------------|--------| | Irondale | 49.6 7 1.62 | 64.9 | | Desloge | 2,215.0 29.96 | 1658.4 | | Washington State Park | 1,843.4 = 10.79 | 704.3 | | Brown's Ford | 1,438.3 6.55 | 484.5 | | Mineral Fork | 291.5 2.52 | 369.7 | | Brown's Ford | 1,438.3 | 484.5 | NOTE: Adjusted total sediment metal concentrations (ug/g dry weight). Source: National Fisheries Research Laboratory Report (Ref. 16). # 4.2 METALS IN AQUATIC BIOTA Several past studies have focused on the elevated metal levels in the aquatic biota present in the Big River. In the report prepared by the National Fisheries Laboratory, crayfish, fresh water mollusks, and fish also were sampled. The sample locations were the same as for surface water and sediments (Figure 5). In crayfish samples, Pb and Cd levels were elevated at Desloge, Washington State Park, and Brown's Ford. The highest Pb concentration was 140 ug/g at Desloge. Pb concentrations of crayfish were 1.4 ug/g at Irondale and 2.7 ug/g at Mineral Ford. Since crayfish feed on aquatic macrophytes and detritus they can accumulate sediment-bound toxins. Pocketbook mussels were collected at all the locations except Desloge, where none could be found. Results showed the highest mean Pb concentrations at Brown's Ford ranging from 310 to 490 ug/g in soft tissue and 18 to 19 ug/g in the shell. Pb levels at Washington State Park were from 200 to 310 ug/g in soft tissue and 8 to 22 ug/g in the shell. The control sample at Irondale had mean Pb levels of 2.16 ug/g in soft tissue and 0.76 ug/g in the shell. The results of fish samples collected on the Big River varied with fish types. Bottom-feeders, such as catfish and the Redhorse sucker, tended to have higher concentrations of metals, than fish such as the smallmouth bass that do not feed on bottom sediment. The Pb content in the Redhorse sucker was greater than the 0.3 ug/g dietary limit recommended by the World Health Organization (WHO) at Desloge (0.57 ug/g), Washington State Park (0.43 ug/g), and Brown's Ford (0.63 ug/g). The Pb concentrations at Irondale and Mineral Fork were well below the WHO limit (Table 5) (Ref. 16). Research conducted on fish over a five-year period by the University of Missouri Rolla confirms the above results. This research shows that over a five-year period, the Pb concentrations in suckers from the Big River near the lead tailings piles have consistently exceeded the WHO limit (Ref. 17). These research results demonstrate that mine tailings have raised lead levels in the benthic zone of the Big River and in the bottom feeders that live in this zone of the river. This study also determined that the tailings have had little effect on the heavy metals content in the river water. #### 4.3 MINE TAILINGS FOR USE AS AGRICULTURAL LIME Research done by the University of Missouri Rolla on the possible use of mine tailings as agricultural lime determined that this practice may be acceptable. It also states that caution should be taken because some older tailings piles have much higher concentrations of Pb than more recently developed piles. It must also be noted that plant uptake studies have indicated that both lettuce and radishes tend to accumulate some Pb and Cd when lead/zinc tailings were mixed with soil as agricultural lime (Ref. 12). ## 4.4 LEAD IN DUST FROM TAILINGS PILE The Missouri Department of Natural Resources (MDNR) collected air quality data near Flat River, Missouri, approximately 2 miles southeast of the Desloge mine tailings pile. MDNR used one hi-vol monitor located approximately 2,000 feet north of the St. Joe Park Tailings Pile near Data was collected for the three-year period 1981, 1982, Flat River. and 1983. Monitor filters taken during the initial sampling period of January through August 1981 were analyzed for Pb. No additional filters in the three-year period were analyzed for Pb. The total suspended particulate (TSP) annual geometric mean in 1981 was 50.55; 1982 was 35.47; and 1983 was 47.43 ug/m³ (Ref. 18). The National Ambient Air Quality Standard (NAAQS) for the annual geometric mean of TSP is 75 ug/m³ (Ref. 15). The results of the Pb analyses for the first three quarters of 1981 were January-March 0.14 ug/m³, April-June 1.09 ug/m³, and July-August 0.17 ug/m³ (Ref. 18). The NAAQS primary standard for Pb in a calendar quarter is 1.5 ug/m³ (Ref. 15). These results are all within the standards for air quality and are adequate for southerly Because the prevailing winds in this-part of the country vary from season to season or month to month additional hi-vol monitoring devices situated around the tailings pile would have been more effective than one unit (Ref. 19). Also, a background or control hi-vol monitor was not used, so no control data is available for comparison. Table 5 Metals Concentrations in Edible Portions of Fish in the Big River Big River Mine Tailings-Desloge, Missouri | and the second | | | | |---|---|-------|------------| | Location | The second secon | | · | | Species | Pb | Cd | Zn | | Mineral Fork | $\widehat{\mathbf{A}}_{i} = \frac{1}{1 + i \cdot 1} \sum_{k=1}^{n} 1$ | : | * + 14 ° . | | Smallmouth bass | 0.19 | 0.01 | 13.97 | | Yellow bullhead | 0.13 |
0.02 | 5.67 | | Redhorse sucker | 0.08 | 0.01 | 13.42 | | Brown's Ford | 7-10 (1.3) | | 1 = 4 | | Smallmouth bass | 0.21 | 0.01 | 4.50 | | Flathead catfish | 0.29 | 0.01 | • | | Redhorse sucker | | | 12.24 | | Rednorse sucker | 0.63 | 0.01 | 11.67 | | Washington State Park | | | • | | Smallmouth bass | 0.27 | 0.01 | 9.49 | | Flathead catfish (4) | 12.00 | 0.34 | 23.00 | | Redhorse sucker | 0.43 | 0.01 | 9.38 | | Mixed suckers | 0.38 | • | | | # 3 = 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 | And the second s | | - • | | Desloge | | | * | | Smallmouth bass | 0.05 | 0.01 | 11.73 | | Channel catfish | 0.13 | 0.03 | 5.12 | | Redhorse sucker | 0.57 | 0.03 | 16.15 | | Mixed sucker (2) | 0.79 | | | | Irondale | * * * * * * * * * * * * * * * * * * * | | | | Smallmouth bass | 0.01 | <0.01 | 13.28 | | Flathead catfish | 0.06 | 0.06 | 6.75 | | Redhorse sucker | 0.02 | 0.01 | 9.32 | | Mixed sucker | 0.07 | | | | **===================================== | | | | NOTE: Means of two samples (individual fish) unless otherwise indicated. Reporting unit is ug/l wet weight. Source: National Fisheries Research Laboratory Report (Ref. 16). # SECTION 5: PHYSICAL SETTING ### 5.1 CLIMATOLOGY AND DEMOGRAPHY St. Francois County is hot in summer, especially at low elevations, and moderately cool in winter, especially on mountains and high hills. Rainfall is fairly heavy and well distributed throughout the year. Snow falls nearly every winter, but snow cover lasts only a few days at a time. In winter the average temperature is 35 degrees F, and the average daily minimum temperature is 24 degrees F. In summer the average temperature is 75 degrees F, and the daily average maximum is 88 degrees F. Of the total annual precipitation, 23 inches, or 60 percent, usually falls in April through September. The heaviest 1-day rainfall during the period of record was 4.95 inches at Farmington on June 30, 1957. Thunderstorms occur on about 50 days each year occurring primarily in summer. Average seasonal snowfall is 12 inches. The average relative humidity is about 60 percent. Humidity is higher at night and the average at dawn is 80 percent. The prevailing wind is from the south. Average windspeed is highest, 12 miles per hour, in March: The climate is classified as humid continental (Ref. 20). The population of St. Francois County recorded in 1982 was 42,600. Farmington, Missouri is the county seat and has a population of 8,270. Desloge, located 2,500 feet southeast and 300 feet south of the site, has a population of 3,481 (Ref. 26). # 5.2 TOPOGRAPHY AND DRAINAGE The Big River Mine Tailings site lies on the eastern side of the Ozark Highland in St. Francois County, Missouri. The major physical features in the area are the St. Francois Mountains to the south, the Farmington Plain to the east, and the dissected topography of the Salem Plateau located to the north (Ref. 20). The site is between these major features on the floodplain of the Big River. The basin topography of the site is a rounded hill which slopes on the east, north, and west sides toward the Big River. A contour map of the site is included as Appendix E. The on-site drainage pattern is discussed extensively in Section 2.3. The site drains primarily into the Big River along the entire perimeter of the horse-shoe bend where the site abuts the river and forms the site boundary. ### 5.3 SOILS Most of the site is characterized by Psamments soils. This unit consists of deep, nearly level to gently rolling, excessively drained, newly formed soil in tailings ponds. These soils are formed in crushed dolomitic material from lead mining. Permeability is rapid and surface runoff is slow to medium although most precipitation is absorbed into the surface. The available water capacity is low. The natural fertility is very unbalanced, and careful fertilization is required to make the soil suitable for any plant growth. The organic matter is also very low. Some areas have been seeded to grasses and legumes but results are poor. These soils are generally unsuitable for growing grasses, shrubs, and trees unless intensively managed. The areas where natural vegetation occurs on site consist mainly of Caneyville silt loam except for a small area on the southwest portion of the site where Gasconade, flaggy, silty, clay loam occurs. Canyville silt loam has 2 to 5 percent slopes and is moderately deep, well drained. This soil occurrs on convex ridgetops. The surface layer is a dark-brown silt loam about 5 inches thick with a subsoil of silty clay loam and silty clay about 30 inches thick. Permeability is moderately slow, and surface runoff is slow to medium. Available water capacity is low. Gasconade flaggy, sitly, clay loam has 9 to 35 percent slopes, is excessively drained, and occurs on uneven side slopes. The surface layer is a very dark-brown flaggy, silty, clay loam about 8 inches thick. The subsoil is dark-brown very flaggy, silty, clay about 5 inches thick. Permeability is moderately slow, and surface runoff is rapid. Available water capacity is very low. All of the soils on site are underlain by hard-bedded dolomite (Ref. 20). #### 5.4 STRATIGRAPHY The Big River Mine Tailings site is underlain by Precambrian felsites and granites, which are overlain by rock units of the Upper Cambrian series (Ref. 21 and 22). Figure 6 depicts the general stratigraphy of the site vicinity. The Upper Cambrian Series rock units consist of in ascending order; the Lamotte Formation; the Bonneterre Formation; and the Elvins Group, which contains the Davis and Derby-Doerun formations. The Elvins Group, and the Potasi and Eminence formations will not be considered in this report because they are topographically higher than the Big River Mine Tailings site (Ref. 21 and 22). The Lamotte Formation is predominantly a quartzose sandstone that grades laterally in many places into arkose and conglomerate (Ref. 22). The formation is approximately 300 feet thick in the study area (Ref. 21). The Lamotte aquifer is a regional drinking water source (Ref. 23). The Bonneterre Formation is typically a light-gray, medium to fine-grained, medium-bedded dolomite, although it consists of relatively pure limestone in some areas (Ref. 22). The formation is approximately 350 feet thick in the study area. This formation is the principal source for lead mining in the area that occurred in the late 19th and early to mid 20th centuries. The Bonneterre aquifer is also a regional drinking water source (Ref. 23). | e de si | EM | ALES | MATION OF | SECT | ION. | THICH | GENERAL LITHOLOGY | HYDROLOGY | KEY | | | | | |-------------|---|------------|-----------|------|--|-----------|--|-----------|----------------------------|--|--|--|------------------| | RECENT SO | | * | | | | 100 | DOLOMITIC MINE TAILINGS | N/A | Limostano | | | | | | | | | 50 | | | | | | Datamito | | | | | | | | ERRE | . V= 1 | | | 200- | BONTERRE
Delomite, light-gray to dark | | Sandatano | | | | | | | | BONNETERRE | e | | | 450 | brown, fine to medium
grained, glaucanitic in
places, contains some
dark-green to black, thin | AQUIFER | Shelo | | | | | | | ES | | | | | | shale beds | | Granito | | | | | | IAN | N SERIES | | 300 | | | | | | Boddod Chorl | | | | | | CAMBRIAN | CAMBRIAN | | | | !!: | | | | Sandille | | | | | | | | | | | UPPER C | ONE | | | | | | | gratsite
0000 | | |) כ | SANDSTONE | | | 7.55 5-3.
 | 0-
500 | LAMOTTE Sandstone and conglomerate, quartzose, arkosic; contains interbedded red-brown | AQUIFER | Argilicaceus
Limactorio | | | | | | | | AMOTTE | a y | | ·
· | | shale. | | Argillosocus
Sondolono | | | | | | | | | | | ************************************** | | Marine | | Charty
Limpotono | | | | | | | | | 600 | | | | | | Capencines
Shoo | | | | | | RIAN | | | - | | | | the second of th | 1 | Arxesses
Uncooper | |
 | | | PRECAMBRIAN | | | - 9 | | | | IGNEOUS AND VOLCANIC ROCK | N/A | TIII Q Gravos | | | | | | PRE | | | 12.77 E | 1 | 18 | | The second of th | | Loons | | | | | | | BIG RIVER MINE TAILINGS DESLOGE, MISSOURI Vertical Scale (feet) | | | | | | | | | | | | | WASTE SITE TRACKING NO.: MO0616 PREPARED BY: C. WILLIAMS ECOLOGY & ENVIRONMENT FIT APRIL 1988 SOURCE: REFERENCE 22 #### 5.5 HYDROGEOLOGY The area ground water aquifers that are topographically lower than the site are—the—Bonneterre and Lamotte—Formations. The Flat—River Water—District serves the towns of Desloge, Elvin, Flat River, Leadington, River Mines, and Ester, Missouri. The approximate population served is 12,000 (Ref. 24). The Big River—Mine Tailings site is adjacent to the town of Desloge and is within 2 miles of Flat River. The Flat River Water District's water supply comes from the Bonneterre Formation, via a sealed, abandoned mine shaft located approximately 2 miles south of the site in River—Mines, Missouri; and from the Lamotte Formation, via a well located approximately 3,000 feet—east in Desloge, Missouri, that is pumped from 410 feet (Ref. 24). The typical ground water flow around the site is toward the river. Several natural springs around the site area flow into the Big River (Ref. 9). When the river is at flood stage, ground water may not flow toward the river, though this situation is unusual. #### SECTION 6: SUMMARY AND CONCLUSIONS In the spring of 1977 a catastrophic erosional event occurred in which a massive portion of the 600-acre Desloge Mine Tailings pile flowed into the Big River. As a result of this event, mine tailings laden with heavy metals were distributed several miles downstream. The tailings covered the benthic zone of the Big River and altered its physical and chemical composition. Because several other tailings piles exist in the area, it is difficult to attribute all of the heavy metal contamination in the Big River to the Desloge tailings pile. Certainly, the Desloge pile has been a major source of the tailings entering the Big River and has had a detrimental effect on the water quality in the river. It has been established through numerous research projects that lead concentrations are elevated in certain benthic-feeding biota at the Desloge tailings pile and for several miles downstream. Some data has been collected to determine whether lead-bearing total suspended particulates are a concern at this site. Additional monitoring would be required to accurately characterize this element. The day of the FIT reconnaissance, strong winds had created a suspended particulate plume that originated at the site and was carried over the town of Desloge (Photos C-1, C-2, C-4). The on-site county landfill has raised many concerns. The landfill operators apply a soil cap when filling is completed, which reduces wind erosion considerably. However, the potential for the release of lead to ground water and surface water (Big River) via acidic leachate from the landfill is high. Remedial action by St. Joe Minerals Corp. has reduced water and wind erosion in certain areas. Yet the majority of the site remains extremely susceptible to wind erosion and water erosion is a severe, chronic problem in other areas. Since 1985 St. Joe Minerals, the county landfill, and the Desloge supervision and maintenance of the Desloge tailings pile, and have The Big River Mine Tailings site near Desloge, Missouri, is a documented source of chemical contamination. Additionally, erosional events have altered the benthic zone of the Big River. The site area is much more work is needed to minimize the huge, covering approximately 600 acres. Though stabilization efforts adversely influences the Big River and the local investigated possibilities for long-term stabilization of the site. Stabilization efforts have have achieved some success, erosion which now ambient air. #### SECTION 7: REFERENCES - Bonne Terre Quadrangle Missouri 7.5 Minute Series (Topographic), United States Geologic Survey, 1982. - 2. Emergency Action Plan for Lead Mine Tailings Desloge, Missouri, Draft, 1981. - 3. Hudwalker, Marvin, February 2, 1988, personal communication, Professional Engineer, Hudwalker and Associates, Inc., Farmington, Missouri. - 4. Novak, John and Hasselwander, Gerard, January 1980, Control of Mine Tailing Discharges to Big River. - 5. AuBuchon, Bryant, December 1, 1987, personal communication, Manager St. François County Landfill, Desloge, Missouri, - 6. Czarneski, James, 1984, Accumulation of Lead in Fish from Missouri Streams Impacted by Lead Mining, Missouri Department of Conservation. - 7. Gale, N. etal, Lead Concentrations in Edible Fish Fillets Collected from Missouri's Old Lead Belt. - 8. Mattson, C., November 13, 1987, personal communication, Project Manager, St. Joe Minerals Corporation, Irvine, California. - 9. Burris, James, February 1, 1988, personal communication, Director, Missouri Department Natural Resource Poplar Bluff Office, Poplar Bluff, Missouri. - 10. Burns & McDonnell Engineers, Desloge Tailings Pile Management Plan Study Phase I Report, February 1, 1987. - 11. Herschlach, Robert, April 13, 1987, Resource Conservation, Soil Conservation Service Personal Communication, Burris, James, Regional Administrator, MDNR-Poplar Bluff, Missouri. - 12. Wixon, B.G., etal, University of Missouri-Rolla, A Study of the Possible use of Chat and Tailings from the Old Lead Belt of Missouri for Agriculture Limestone, December 1983. - 13. Quality Criteria for Water, U.S. Environmental Protection Agency, July 1976. - 14. EPA Regulatory Status for Chemicals in Drinking Water, July 1987. - 15. Code of Rederal Regulations, Protection of Environment 40, Parts 1 to 51, July 1, 1987. - 16. Schmitt, C. and Finger S., 1982, The Dynamics of Metals from Past Present Mining Activities in the Big and Black River Watersheds, Southeastern Missouri. - 17. Gale, Nord, etal, Historical Trends for Lead in Fish, Clams and Sediments in the Big River of Southeastern Missouri, University of Missouri-Rolla. - 18. Air Quality Data at Flat River, Missouri, 1981, 1982, 1983, Missouri Department of Natural Resources. - 19. Climatic Altas of The United States, 1979 United States Department of Commerce. - 20. Soil Survey of St. Francois County, Missouri, August 1981, National Cooperative Soil Survey. - 21. Buckley, E.R., 1908 Geology of the Disseminated Lead Deposits of St. François and Washington Countries: Missouri's Bureau of Geology and Mines, 2nd Ser., Vol 8, PA. 1. - 22. Missouri Division of Geological Survey and Water Resources, 1861, The Stratigraphic Succession in Missouri. - 23. Missouri Division of Geological Survey and Water Resources, 1983, Ground Water Maps of Missouri. - 24. Johnson, Dennis, December 2, 1987, personal communication, Assistant Manager Water District Flat River, Missouri. - 25. Wixson, B. G., etal, Influence of Tailings from the Old Lead Belt of Missouri on Sediments of the Big River, University of Missouri-Rolla. - 26. Rand McNally's Road and Reference Atlas, 1982. APPENDIX A EPA Form 2070-12 | | POT. AL HAZARIA | JOS WASIE SI | | | ICATION | | |--|---|--|---|--|--|-------------| | PA | Preliminary i | L SSESSHENT | er# of a | 01 STATE 02 | SITE NUMBER
981126899 | | | | PART 1 - SITE INFORM | aa dha hoifa | Sessient | МО | 981126899 | | | ITE NAME AND LOCATION | | | | | - | | | E NAME (Legal, common, o | or descriptive name of site |) 02 STREE | F, ROUTE NO., OR SP | ECIPIC LOCAT | ION IDENTIFIER | | | ivor Mine Tailings | | Approxi | matoly 1 mile north | wost of Dosl | ogo, Missouri | | | Y | - | 04 STATE | 05 ZIP CODE 06 COU
63601 St. Fr | | 07 COUNTY 08 | CONG | | RDINATES LATITUDE . | LONGITUDE | | | | | | | 53' 11".4N | 90° 33' 00".0W | _ | | | v . | | | ECTIONS TO SITE (Startin | ng from nearest public read | 1) | 77.3 p. 1. | | | | | | Prom Desloge the site is to is west, north, and east s | | oly 1 mile northwes | t and is bor | dorod by a dist | rict | | RESPONSIBLE PARTIES | | | ALL THE LAND COMMENTS | | - | | | ER (If known) | | 02 STREE | r (Businoss, mailin | a. rosidonti | al) | | | rancois County | . 1 | l l | | | · | 1 | | Y | në ka | 04 STATE | 05 ZIP CODE 06 TEL | EPHONE NUMBER | R | | | 9 9 | | мо | 63601 ===== (314) | 431-6505 | | <u>.</u> | | RATOR (If known and diff | eront from owner) | 08 STREE | r (Business, mailin | g, rosidonti | al) | | | rancois County Environme | ntal Corp. | | e ere e e e e e e e e e e e e e e e e e | | .= | | | Y | | 10 STATE | 11 ZIP CODE 12 TEL | EPHONE NUMBE | R | | | g e | 1 | МО | 63601 (314) | 431-4768 | f | - 1 | | E OF OWNERSHIP (Check on | 10) | | | | | | | A. PRIVATE B. FE | DERAL: | · | C- STATE X D | . COUNTY | E.MUNICIPAL . | | | F. OTHER: | (Agency nam | ne) | G. UNKNOWN | | - | - : | | OTREK. | (Specify) | | | | | ŀ | | FR OPERATOR NOTIFICATION | ON FILE (Check all that a | apply) | | | | | | CRA 3001 DATE RECEIVED: | र्ग र | | E (CERCLA 103 c) DA | TE RECEIVED: | c. | NONE | | | IO/DAY/YR | | | | MO/DAY/YR | | | MARACTERIZATION OF POTER | TIAL HAZARD | | ering and the second | | | | | SITE INSPECTION | BY(Check all that a | | · · · · · · · · · · · · · · · · · · · | | | 1 | | X YES DATE 1/25/88 | X A. EPA | X B. EPA CO | NTRACTORC. ST. | ATED. | OTHER CONTRACTO | R | | MO/DAY/YR | E. LOCAL H | EALTH OPPIC | IAL F. OTHER: | | | 1 | | | · · · · · · · · · · · · · · · · · · · | | · · · · · · · · · · · · · · · · · · · | (Spo | cify) | — I | | |
CONTRACTOR NAME(S): | E & E/FIT | _ | | | | | E STATUS (CHECK ONE) | 103 | YEARS OF O | PERATION | | | | | A. ACTIVE X B. INA | | | 1929 19 | 58 | UNKNOWN | 1 | | | 1 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | | ING YEAR | | - (| | CRIPTION OF SUBSTANCES P | OSSIBLY PRESENT, KNOWN, OR | | | | | | | | moan value of 2,077 ppm loly 600 acres at a depth o | | ppm Cadmium (Cd)
t within a "horso s | and 1,226 ppi | m ginc (gn).
Big Rivor. | } | | CRIPTION OF POTENTIAL HA | ZARD TO ENVIRONMENT AND/OR | POPULATION | - | | | | | on of tailings into the
tial health hazard from
tial for landfill organi | Big Rivor the dispersion of load lad | len dust in t | tho air. | | . · · · · · · · · · · · · · · · · · · · | | | | c chelating agents to solu | | | Lu. | • | | | iority assessment | c chalating agents to solu | | | <u> </u> | <u> </u> | \neg | | ORITY FOR INSPECTION (Ch | eck one. If high or modiu | im is chocko | d, comploto Part 2 | - Wasto Info | rmation and | | | ORITY FOR INSPECTION (Ch | eck one. If high or modiu | im is chocko | d, comploto Part 2 | - Wasto Info | rmation and | | | ORITY FOR INSPECTION (Ch
PB
A. HIGH | eck one. If high or modiunt 3 - Doscription of Haza B. MEDIUM Inspection required) | im is chocko
irdous condi
C. Low | d complete Part 2
tions and Incidents
D. NON | - Wasto Info | dod | | | ORITY FOR INSPECTION (Ch
Pa
A. HIGH
Epection required (I | eck one. If high or modiunt 3 - Doscription of Haza B. MEDIUM Inspection required) (I | im is chocko
rdous condi
C. Low
Inspect on t | d. comploto Part 2
tions and incidents
D. NON
imo. (No furthe | - Wasto Info | dod | | | ORITY FOR INSPECTION (Ch
Ps
A. HIGH
epection required (I
emptly) | eck one. If high or modiunt 3 - Doscription of Haza B. MEDIUM Inspection required) (I | im is chocko
rdous condi
C. Low
Inspect on t | d. comploto Part 2
tions and incidents
D. NON
imo. (No furthe | - Wasto Info
)
E
r action noo
current disp | dod | MBER | | ORITY FOR INSPECTION (Cheps A. HIGH Epection roquirod (Iomptly) MYORMATION AVAILABLE PRO | eck one. If high or modiunt 3 - Doscription of Haza B. MEDIUM Inspoction required) (I | m is chocko
rdous condi
C. Low
nspoct on t
valiable ba | d. comploto Part 2
tions and incidents
D. NON
imo. (No furthe | - Wasto Info
)
E
r action hoo
current disp | dod.
osition form) | MBER | | ORITY FOR INSPECTION (Cheps A. HIGH Epection required (I empty) EVORFATION AVAILABLE PRO | eck one. If high or modiunt 3 - Doscription of Haza B. MEDIUM Inspoction required) (I | m is chocko
rdous condi
C. Low
nspoct on t
valiable ba | d. comploto Part 2 ions and incidents D. NON (No further complete) | - Wasto Info | dod.
osition form)
03 TELEPHONE NU | MBER | RM 2070-12 (7-81) | | · | | MASTE | SITE | 4 | . 14 | L. IDKMTIK | ICVAION | |---------------------|--|--|--|--|---
--|---|---| | | | PRELIMINARY A | Assesshert | | | } 0 | | 02 SITE NUMBER
D981126899 | | | | PART 2 - WASTE | INPORMATIO | | | . L | мо | D981126899 | | ATES, QUARTITIES, A | ND CHAR | ACTERISTICS | | | | | | | | TATES | | | E 03 WAST | TE CHARAC | TERISTICS | · · · · · · · · · · · · · · · · · · · | | | | nat apply) | (Measu | ros of wasto quant | i- (Chock | | | | | | | X E. SLURRY | C108 M | ust be independent | <u>x</u> A. | TOXIC | E. | SOLUBLE | 1. | HIGHLY VOLATILE | | FINESF. LIQUID | l <u></u> | AT A A COLOR | | | | | ısj. | EXPLOSIVE | | G. GAS | المريدية | TONS | – <u> </u> | RADIOACT | ĪVE 🚾 G. | FLAMMABLE | к. | REACTIVE - | | | CUBIC | -YARDS - 4 million | | PERSISTE | NT H. | IGNITABLE | | INCOMPATIBLE | | (Specify) | | | | | | • | m. | NOT APPLICABLE | | | NO. OF | DRUMS | - | | | | | | | PPE | | | | | | | | te notation of the state th | | SUBSTANCE NAME | | 01 GROSS AMOUNT | 02 UNIT | OP MEASUR | E 03 CO | MMENTS | | | | SLUDGE | | #14 1/2 1 | | 1.5 | | | | | | OILY WASTE | ∑4,≈ | | | 44 | | | | | | SOLVENTS | | | | | | <u>. </u> | | | | PESTICIDES | | 7-8 | | | . 4-4-14 | | | · · · · · · · · · · · · · · · · · · · | | OTHER ORGANIC CHEM | ICALS- | £: | | | ing. | | | | | INORGANIC CHEMICALS | s i | | | 9 · · · · · | | | | | | ACIDS | | | | | | | | | | BASES | | 11111 | | | | | | | | HEAVY METALS | | -Unknown | | | Lead, | Zinc, Cad | lmium | - | | SUBSTANCES (See A | ppendix | for most frequent | ly cited (| AS Numbo | rs) | | | | | 02 SUBSTANCE NAME | | 03 CAS NUMBER | 04 57093/ | E/DISPOS | AI. METHOD | 05 CONCE | MOTTAGTON | 06 MEASURE OF CONCENTRATION | | | | | | | | _} | | ug/g | | | | | | | | | | nd/d | | | | | | | | | | nd/d
nd/d | | | - | | | | | | | -9/9 | | cobber | | | | | | JII NIIOWI | • | | | | | | <u> </u> | | · · · · · · · · · · · · · · · · · · · | | | | | | | | | | | | | | | | | | | | | | | | | <u> </u> | | | | 71 E. | | | | | | | | | | | ** | - | | | | | | <u> </u> | | | | | | | | | | | L | | _ | - | | | | | | . | <u> </u> | . : 4 | | | | | | | - | | · · · · · · · · · · · · · · · · · · · | | | - | | | | | | · · · · · · · · · · · · · · · · · · · | | 2 € - | | + | | | | | | 1.54 | | | | | | | | See Appendix for | CAS Nu | mbers) | L | | | -1 | | | | | | | CATEC | ORY | O) PER | DSTOCK NAM | 4E 0 | 2 CAS NUMBER | | UI LEDSTOCK I | · | - 02 01.0 HOHBOK | | | -2 . 20 | -51000 170 | | C CAS FORDER | | | **** | - | | ··· | | | | | | | <u> </u> | · · · · · · · · · · · · · · · · · · · | | | | | | | | | , 9-, | | | | | | | | | OP THEOREMSTON (C) | | | | | | | roportel | | | | | | | | | | | | | llings from the old | Lead B | elt of Missouri to | r Missour | LTOT AGE | icultural | Limeston | , Univers | ity of | | Pangerous Pi | |
An widenscring L | | www. *IV | 41114 | n· | | | | | ~~ . | يغير أنسي | | - <u> </u> | 1.7. | | | • | | | | e estados | | | · | | | | | | • • • | | | = - | | | | | | | ETATES aat apply) X E. SLURRY FINES F. LIQUID G. GAS (Specify) EPE SUBSTANCE NAME SLUDGE OILY WASTE SOLVENTS PESTICIDES OTHER ORGANIC CHEMICAL ACIDS BASES HEAVY METALS S SUBSTANCE NAM Lead Zinc Cadmium Copper Copper | TATES (at apply) (FINES F. LIQUID G. GAS (Specify) (Specify) (Specify) (Specify) (Specify) (Specify) (Specify) (Specify) (NO. OF TPE SUBSTANCE NAME SLUDGE OILY WASTE SOLVENTS PESTICIDES OTHER ORGANIC CHEMICALS ACIDS BASES HEAVY METALS SUBSTANCES (See Appendix O2 SUBSTANCE NAME Lead Zinc Cadmium Copper Copper O1 FEEDSTOCK NAME S (See Appendix for CAS Number of C | PRELIMINARY I PART 2 - WASTE ATES, QUANTITIES, AND CHARACTERISTICS STATES (at apply) X E. SLURRY F. LIQUID G. GAS (Specify) NO. OF DRUMS CUBIC YARDS - 4 million (Specify) NO. OF DRUMS PESTICIDES OTHER ORGANIC CHEMICALS INORGANIC CHEMICALS INORGANIC CHEMICALS INORGANIC CHEMICALS SUBSTANCES (See Appendix for most frequent 02 SUBSTANCES (See Appendix for most frequent 02 SUBSTANCES (See Appendix for most frequent Cadmium 7440-66-6 Cadmium 7440439 Copper 7440508 S (See Appendix for CAS Numbers) 01 PEEDSTOCK NAME 02 CAS NUMBER 03 (See Appendix for CAS Numbers) O1 PEEDSTOCK NAME 02 CAS NUMBER O1 PEEDSTOCK NAME O2 CAS NUMBER O3 CAS NUMBER O40508 | PRELIMINARY ASSESSMENT PART 2 - WASTE INFORMATION TATES, QUANTITIES, AND CHARACTERISTICS STATES SUBSTANCE NAME STATES SOLVENTS SOLVENTS SOLVENTS SOLVENTS SOLVENTS SOLVENTS SOLVENTS SOLVENTS STATES SOLVENTS SOLVENTS STATES SOLVENTS SOLVENTS STATES SOLVENTS SOLV | PRELIMINARY ASSESSMENT PART 2 - CHASTE INFORMATION ATES, QUARTITIES, AND CHARACTERISTICS STATES (at apply) X E. SLURRY FINES _F. LIQUID G. GAS CUBIC YARDS - 4 million (Specify) NO. OF DRUMS CUBIC YARDS - 4 million (Specify) NO. OF DRUMS PER SUBSTANCE NAME O1 GROSS AMOUNT O2 UNIT OF MEASUR SUDDE OTHER ORGANIC CHEMICALS ACIDS BASES TINORGANIC CHEMICALS 3 SUBSTANCE NAME O2 SUBSTANCE NAME O3 CAS NUMBER O4 STORAGE/DISPOS Lead 7440-66-6 Aino tailings pli Zine 7440-66-6 Aino tailings pli Copper 7440508 Mino tailings pli Copper 740508 Mino tailings pli G1 PEEDSTOCK NAME O2 CAS NUMBER O1 O3 CAS NUMBER O4 STORAGE/DISPOS Mino tailings pli O5 PDS OF DS OF INFORMATION (Cito specific references, e.g., state files, references) O5 OF INFORMATION (Cito specific references, e.g., state files, references) O6 OF INFORMATION (Cito specific references, e.g., state
files, references O6 OF INFORMATION (Cito specific references, e.g., state files, references O7 INFORMATION (Cito specific references, e.g., state files, references O7 INFORMATION (Cito specific references, e.g., state files, references O7 INFORMATION (Cito specific references) | TORS TORS AND CHARACTERISTICS VAETA QUANTITIES, AND CHARACTERISTICS STATES (AS PLANTS) A E. SLUNRY FINES F. LIQUID G. GAS CUBIC-VARDS - 4 million (Specify) NO. OF DRUMS TONS SUDDE SUDDE SULVENTS PESTICIDES SULVENTS PESTICIDES SUBSTANCE NAME O1 GROSS AMOUNT O2 UNIT OF MEASURE O3 CONTROLLS INGROANIC CHEMICALS SUBSTANCE NAME O3 CAS NUMBER O4 STORAGE/DISPOSAL METHOD COMBINE TA40-66-6 Mino toilings pilo COMPORT TA40-66-6 Mino toilings pilo COMPORT TA40-68-6 COMPORT TA40-68-6 Mino toilings pilo TA40-68-6 COMPORT TA40-68-6 MINO toilings pilo TA40-68-6 COMPORT TA40-68-6 TA40-6 | PRESIDENCE NAME PRATY 2 - MARIE LIMPORIANTION ATES, QUARTITIES, AND CHARACTERISTICS TATES AL SQUARY ATES, QUARTITIES, AND CHARACTERISTICS TATES AL SQUARY FINES | TRAIL PLANTE INFORMATION PARY 2 - UNSTRE INFORMATION O2 WASTE QUANTITY AT SITE ALE ASPOLY) X E. SLUBRY TONS O3 WASTE CHARACTERISTICS O4 WASTE QUANTITY AT SITE O5 WASTE CHARACTERISTICS C(hock all that apply) X A. TOXIC | | | POTEN. :AL | HAZARDOUS | WASTE SITE | | I. IDENTIFICATI | ON . | |--|--|--------------------------|--|---------------------------------------|-----------------------------------|--| | PART 3 | · · · · · · · · · · · · · · · · · · · | dera vragi
Uodrazah 🤊 | SSMENT = = = = = = = = = = = = = = = = = = = | INCIDENTS | 01 STATE 02 SITE
MO D98112 | NUMBER
6899 - | | AZARBOUS CONDITIONS AND INC | | | <u></u> | | | | | A. GROUNDWATER CONTAMINATIO | N E | 02 0 | BSERVED (DATE: |) | X POTENTIAL | ALLEGED | | ULATION POTENTIALLY AFFECTE | D: | 04 NARRA | TIVE DESCRIPTION | | | | | is potential for ground wa
landfill may rolease organi | ter contomination | n from sur
ta which c | faco water because | so faults o | xist in the site | pros. The on- | | advantage and a second | | | 1,9 A | | | · | | | | | ÷ | | | | | B. SURFACE WATER CONTAMINAT | ION - Filelys | 02 0 | BSERVED (DATE: |) | POTENTIAL | ALLEGED | | ULATION POTENTIALLY APPECTE | D: | 04 NARRA | TIVE DESCRIPTION | | | - | | o site and soveral miles do
b and Zn lovels slightly in | whatream the bott | tom of the | Big Rivor is limited for more m | nod with mi
ine tailing | ne tailings. This to erode into t | s has raised
he rivor. | | • | | | '_ ₹ ♥ , | res | | | | | · · · · · · · · · · · · · · · · · · · | | | | • | | | C. CONTAMINATION OF AIR | | 02 0 | BSERVED (DATE: |) | X POTENTIAL | ALLEGED | | ULATION POTENTIALLY AFFECTE | and the state of t | | TIVE DESCRIPTION | efifeeur,
gantasa | | * * | | laden dust blows off the to | p of the mine ta: | ilings pil | o.
 | * | | , | | | Maria de la companya | , | . <u></u> | | | n na | | | 1 422 | , | | o Maring | | | | D. FIRE/EXPLOSIVE CONDITION | الا يا | | BSERVED (DATE: |) | POTENTIAL | ALLEGED | | ULATION POTENTIALLY APPECTE | D: | 04 NARRA | TIVE DESCRIPTION | | | - | | known or reported to date | | | No treat | · · | | - | | | * *** | | · : | | | | | · | 7 (7) | | ·. | | | | | E. DIRECT CONTACT | e em e e | | |) | POTENTIAL | ALLEGED | | ULATION POTENTIALLY APPECTE | | | TIVE DESCRIPTION. | | | | | e are currently and have in ation. Also landfill worke | rs are exposed to | the tail | in vonicios (ATV:
ings daily. | s) on the m | ino tailings pilo | for | | - | | | | 1.49 | | | | | , <u></u> | | · · · · · · · · · · · · · · · · · · · | | - | | | P. CONTAMINATION OF SOIL | The g | | BSERVED (DATE: |) | POTENTIAL | ALLEGED | | A POTENTIALLY APPECTED: 600 | | U4 NARRA | TIVE DESCRIPTION | 1 7 <u>1.4</u> | | | | ine tailings cover approxim | (Acres) | | | 14. | | | | ing ratings cover approxim | acery ove across | | -` * . | | | | | | | | | | | | | | | | | | · | , | | 3. DRINKING WATER CONTAMINA | | | BSERVED (DATE: | <u> </u> | POTENTIAL | ALLEGED | | JLATION POTENTIALLY AFFECTE | D: | U4 NAKKA | TIVE DESCRIPTION | | | | | known or reported to date | *** | | | · - | | • | | | | | 1 50 | · · · · · · · · · · · · · · · · · · · | | • • | | | : | | Terry
 | <u> </u> | | <u> </u> | | 4. WORKER EXPOSURE/INJURY | e en | | BSERVED (DATE: |) | POTENTIAL | ALLEGED | | KERS POTENTIALLY APPECTED: | | U4 NAKKA | TIVE DESCRIPTION | - 1 | | • | | known or reported to date | • | | | | | | | | in the state of | | vi∃ĝ | | | | | | 1 + 1 ± 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + | | | * - √ | | | | I. POPULATION EXPOSURE/INJU | i - •, | | BSERVED (DATE: | <u></u>) | POTENTIAL | ALLEGED | | JLATION POTENTIALLY APPECTE | D: | U4 NARRA | TIVE DESCRIPTION | ÷ | | | | enown or reported to date | | | | | | | | <i>:</i> | | | i fina | | | | | | <u> </u> | | | | | , | | RM 2070-12 (7-81) | £ . | | • • | | | | STATES STATES The section | | POTE. AL | HAZARDOUS WASTE S | ITE | I. IDENTIFICAT | TON | |---|--|------------------------------
--|--|-------------| | PA | PRELI | THERESERA PRANTH | | 01 STATE 02 SITE | | | | | OF HARARDOUS CONDI | TIONS AND INCIDENTS | 1.5 | | | AZARDOUS CONDITIONS AND IN | CIDENTS (CONTIN | | (DAME - 1: /25 /00 | DOM/21/21 | 1111111 | | J. DAMAGE TO FLORA RATIVE DESCRIPTION | in the second of | 02 X OBSERVED | (DATE: 1/25/88 | POTENTIAL | ALLEGED | | tural recovery of vogotati | on has occurred. | The 600 acres of | mino tailings are u | virtually baro. | • | | turur rotovor, or voyetatr | 011 1145 000011-1-7 | | | incoming butter | <i>‡</i> - | | | | | | | | | | | | 1.00 | | <u> </u> | | K. DAMAGE TO FAUNA | | 02 OBSERVED | (DATE: | POTENTIAL | ALLEGED | | RATIVE DESCRIPTION (Includ | = | | 4 | | ı. | | ted levels of Pb, Cd, and | Zn were round in | a study that oxam | inec aidae. | | | | ~ | ್ತ
≀. ೫೯೮-೬೭೭ | • | ini esti
Stategasa | | | | L. CONTAMINATION OF FOOD C | HAIN | 02 OBSERVED | (DATE: | POTENTIAL | ALLEGED | | RATIVE DESCRIPTION | · · · · · · · · · · · · · · · · · · · | | And the second of o | | | | n fooding fish in the Big | River are known | to have elevated 1 | ovels of Pb in their | ediblo tissuo. | Fish are | | t for human consumption th | rough sport rish: | ing from the Big R | ivor. | | • *·• ; | | | in the same | | engen | | | | | | , . | | | | | 4. UNSTABLE CONTAINMENT OF | WASTES | 02 X OBSERVED | (DATE: 1977) | POTENTIAL | ALLEGED | | lls/runoff/standing liquid | s/leaking drums) | | | | | | LATION POTENTIALLY AFFECT | ED: | 04 NARRATIVE DE | SCRIPTION | | | | on of mine tailings into t | he Big River. | | all alika aggar
renna | | · | | | * (***) | | 1 Tan 4, 4, 4, 4 | | | | N. DAMAGE TO OFFSITE PROPE | | 02 X OBSERVED | (DATE: 1977 | POTENTIAL | ALLEGED | | | in the second | | e de la companya l | | | | CONTAMINATION OF SEWERS STORM DRAINS, WWTPS | , | 02 OBSERVED | (DATE: | POTENTIAL | ALLEGED | | NATIVE DESCRIPTION | Sva. | | | | | | nown or reported to date | | | | | | | | 10 1948 <u>- 195</u> 2
- 10 10 10 10 10 10 10 10 10 10 10 10 10 | | . Takes | | • | | | Tasa
Tasa | | | | | | . ILLEGAL/UNAUTHORIZED DU | MOTNO | 02 OBSERVED | (NATE - | DOTENTA! | AVVECED | | ATIVE DESCRIPTION | TPING | VZ OBSERVED | (DAID. | POTENTIAL | ALLEGED | | nown or reported to date | * or a second of the o | | ر المحمد | | | | • | | | | | • | | | · '+- · | | ž, - | | • | | TOTAL OF LUY OFFICE VIOLE | N DORENWALL OR | MARGED HARADOS | | | | | RIPTION OF ANY OTHER KNOW | N, POIENTIAL, OR | ALLEGED HAZARDS | | | | | | | | · · · · · · · · · · · · · · · · · · · | | | | | The Application of the Control th | | | | | | | | | | · | · · | | OTAL POPULATION POTENTIAL | LY APPECTED: 27, | 739 (3-milo radius | <u>) </u> | | | | PHENTS | | | | ······································ | · | | | | | | | | | | Mary Agents | | | | 2 | | : | | | | | | | RCES OF INFORMATION (Cite | specific referen | nces. Q.g. stato | files, sample analy | sis, roports) | | | | | | | | | | ol of Mino Tailings Discha
sinary Invostigation on the
Southoastorn Missouri, P | o Dynamică of Mot
reliminary, EPA | tals from Past and
files. | Prosent Mining Acti | vities in the Bio | g and Black | | | | | | | | | DM 2070 12 /2 011 | 11 to 12 | | | | * *- , | | LM 2070-12 (7-81) | 20 miles | | * | | | #### APPENDIX B Well Logs for Monitoring Wells Surrounding On-Site Landfill #### APPENDIX B Well Logs for Monitoring Wells-Surrounding On-Site Landfill ## MUDUALNER & ASSUCIATES, 1190. Engineers - Surveyors P. O. Box 676 FARMINGTON MO 63640 ### LETTER MF TRANSMITTAL | entra
entra | PARIVINGTON, INC | 7 03040 | 1.22 | | | | | |--|--|--
--|---------------------------------------|--|--|--| | 75 mag (| | | 11/12/87 JOD NO. | | | | | | क्र ^{ास} र दुर्ग ह | (314) 756-67 | 775 | Mr. Bok Overfeit | | | | | | F | closy & Envir | The | Desloye Tailings Pile | | | | | | 9 | —————————————————————————————————————— | | 364 | | | | | | 뛰 | -05 Meterit | | | - | | | | | <u>B.</u> | ilding 3 - Su. | te 404 | | | | | | | 072 | rland Park, | KS 66202 | Water Control | | | | | | | | income and the second of s | 1 Stranger | <u>.</u> | | | | | | | Property of the second | | | | | | | EARE | SENDING YOU A | tached Under separate cover via_ | the following items: | ٠. | | | | | Series (Prince) | ☐ Shop drawings | ✓ Prints □ Plan | s 🗆 Samples 🗆 Specifications | | | | | | The state of s | □ Copy of letter | ☐ Change order ☐ | | | | | | | | , | a secondaria | | | | | | | COPIES | DATE NO. | 5. | DESCRIPTION | | | | | |] | | Plan of Monitoria | • | | | | | | 1 | | Monitoring Well D | cta, U - Comment | | | | | | | | | And the second s | | | | | | | | | | , , = | | | | | | | | | , - | No. 1 | | | | | | | | | | , | | | | | IESE A | RE TRANSMITTED as | | | | | | | | | ☐ For approval | ☐ Approved as submitted | ☐ Resubmitcopies for approval | | | | | | | ▼ For your use | ☐ Approved as noted | ☐ Submit copies for distribution | · | | | | | | 四 As requested | Returned for corrections | Returncorrected prints | | | | | | | ☐ For review and con | ₹ | | | | | | | | FOR BIDS DUE_ | 19 | PRINTS RETURNED AFTER LOAN TO US | | | | | | EMARKS |) | | Francis Comments | | | | | | | | | | · · · · · · · · · · · · · · · · · · · | | | | | | | | | | | | | | | | | Attack to the second of se | · . | | | | | | | | 10 The 10 To | | | | | | | | - 1 | | | | | | | | | + <u>.</u> | | | | | | | | | | | | | | | opy to | | | CIONETA E EL DO DE | | | | | N ometocurou are not an exted, bladly notify us at once. NU,U / UU / UU,A | Surface Elovation 780 Datum MSL | Completion Date 01/1 | 6/87 5 | | . △ −00/2 | AR STRENGTH, | ◇-3 A | |----------------------------------|--|---------------------------------------|------------------|-------------------|---|------------------------| | DESCRIP | TION OF MATERIAL | UMIT DAY WEIGHT | SAMPLES | STANDARD | LO LS PENETRATION (ASTM 0 1906) BLOWS PER FOO | | | O Z | TION OF MAICKIAL | TMIT S | ν, | PL | WATER CONTE | 17.% | | | | | - | 10 8 | 10 20 | 40 50 | | slightly sil
becoming grad | yery loose to loose
ty fine SAND
y and more silty belo | | SS | Δ | | | | -10- | | . [€] | SS | | | | | | | | SS- | Δ , ο | | Grain Size | | | And the second s | - 4 | 3 ₂ | | | | | -20- | | | SS | | | 1111-111-1111 | | - | The second secon | 7 7 4 4 1 | SS | Δ | 0 | Grain Size
Analysis | | Intermixed gr | ray. Ploose to medium
clayey SAND. to sand | • | 44 | | | | | clayey SILT | Salara da Salara
Salara | 1820 | _SS_ | - A | | Grain Size | | | Francisco (Marie Constitution of the Constitut | allower | SS | Δ: | .0 | Analysis | | A | CANDY DOLONITE -+ | | ar sali. | | | | | 37.5 feet | on SANDY DOLOMITE at | | | | | | | | | | - ' | | | | | | | | 3.00 | | | | | 50 | | 18.00 | | | | | | - 50- | and the state of t | 100 | | | | | | · | | | | | | | | | the second | in the | 1 | • • • • • • • • • | | | | -60- | | Vertical and | i., | | | | | | * *** | | | | | | | | 9. · · · · · · · · · · · · · · · · · · · | | | | | | | | * = - x | 5 | * 1. | | | | | -70 | | | * * . | | | | | | en e | e e e e e e e e e e e e e e e e e e e | | | | | | | interpretation of the second | | ~ 4 | | | | | g and the | Figure 1 | | 7 F | | | , | | GROUNDWATER DAT | A DRILLING | DATA | | • | | | | ENCOUNTERED AT23. 5 FEE | T AUGER 9' | HOLLOW STEN | . 6.6
Îgan | =. | | • . | | ATPEET AFTER | HOURS WASH GORING | PROMPERT | | 106 |)f Bori | MG . | | ATFEET AFTERFREE WATER NOT EHCOU | | DUILL HIG | | | יו שישט ויע אויע | | | DURING DRILLING | ring well cosing inst | A TOURS | *** | t | JG-1 | | | - | | · · · · · · · · · · · · · · · · · · · | | | | * ** : | | | <u> </u> | | · . | GEOTE | CHMOI | OGY | | SEE MOTATION SHEET POR DES | CRIPTION OF ABBREVIATIONS | | | - | ouis, Missouri | | SHEAR STRENGTH, 181 UNIT DRY WEIGHT Surface Elevation 784 Complation Data 01/16/87 O - 60/5 **∆-**00/2 Datum MSL SAMPLES 0,5 1.0 STANDARD PENETRATION RESISTANCE DEPTH IN FEET (DOEL O MISA) △ - DLOWS PER FOOT DESCRIPTION OF MATERIAL WATER CONTENT.% PL M 30 Ton. loose to medium dense. fine SAND with zones of gray clay up to 3" SS -10-20-SS -30-SS Grain Size Gray, medium dense. silty SAND Analysis to sandy SILT with zones of gray. clay and silt 40--50-STRAFIFIC Gray. medium dense. silty to slightly clayey fine SAND -60-ΟΔ: Grain Size Analysis: 70 .Δ. Gray. very loose, sandy and clayey SILT with green and black organics at 99 feet DRILLING DATA GROUNDWATER DATA ENCOUNTERED AT 34 PEET AUGER 9" HOLLOW STEN MASH DORING PROM PRET LOG OF BORING AT_____PEET AFTER _____HOURS FREE WATER MOT ENCOUNTERED -CME 55 DRILL RIG DG-1 REMARKS: PYC monitoring well cosing installed GEOTECHNOLOGY SEE NOTATION SHEET FOR DESCRIPTION OF ADDREVIATIONS St. Louis, Missouri . SHEAR STRENGTH, 191 CONTINUATION OF BORING UNIT DAY WEIGHT SURFACE ELEVATION _ 784 DG-1 O - 6n\8 **∆-**00/8 0-8A SAMPLES 6,0 STANDARD PENETRATION RESISTANCE DEPTH IN FEET (ASTH 0 1900) DESCRIPTION OF MATERIAL WATER CONTENT, % PLF 10 30 90 Gray, very loose, sandy and clayey SILT with green and black organics at 99 feet SS Grain Size Analysis 0 <u>-90</u>. DOUNDARIES ADDAL. TERMINATED AT 100' DUE TO INSTABILITY HAATE OF TAILINGS TION MAY O TYPES AND THE TRANSITION OF THE PARTY BETWEEN SOIL TY **)40** 150. 60(70 GEOTECHNOLOGY St. Louis, Missouri SEE HOTATION SHEET POR DESCRIPTION OF ADDREVIATIONS
HOTE: | j | Sur | face Elevation 794 | | · 麦 ** | | | R STRENGTH | | |--------------------|--------------|--|--|---------------------------------------|------------------|-------------------|---|------------------------| | Ì | | um MSL | Completion Date 01/13/87 | WEIGHT
LUE | ٠, | _0.5
0.5 | O - 60\3 | ♦-8 ∀ | | | | | | | SAMPLES | | PENETRATIO | ZO ZOS
N RESISTANCE | | | EPTH
FEET | •• <u>•</u> •. | | URIT DRY | ₽ AZ | | (ASTH DISOG)
BLOWS PER FO | | | | lw i | DESCRIPTION | OF MATERIAL | . F α | S. | PL | BLOOS PER PO | ENT. % | | į | 0 = | | | 3 | | _ | 30 | 40 30 | | } | | Gray. loose, SAND | With zones of | | | | | | | [| | silty to clayey SAN | סא | -1,5m TSV | SS | | | | | | | | * 1 | · · · · | _J.J | Δ | | | | | | | | | | | L : | FrainySize | | | -10 | . See | | | SS | · · · · · · · | / | | | O9 | | <u> </u> | | ÷=, , | - | | | | | GOUNDARIES
DUAL | | Gray. very loose. | sandy to slightly | 15 th | SS | Δ | • | 1 | | AL AL | | clayey SILT | | . 7., 8.7 | <u> </u> | | | | | < ₹ | -20- | | | · · · · · · · · · · · · · · · · · · · | SS | | | | | ATE
GR | | | • * | To the second | | | | Grain Size | | PRORIDATE | | | Primary and Primar | | SS | . | 0 | Analysis | | MAA | | * * * * * * * * * * * * * * * * * * * | | | | : | | : | | NO! | -30 | 1 Nade - 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | ┪ | <u> 55</u> | ··· | | | | THE
HSIT | | <pre>↑ Medium stiff, dark silty CLAY</pre> | brown and gray. | 1 | | | | S-6" | | TRA | | Split spoon refusal | OF SANDY POLOMITE | . | | : : : : : : : : : | | | | RES | | at 30.5 feet | SAME FOCUMITE | | | | | | | AGP
NO N | -40 | GC 30. 3 1 88C | 5 | | | | | | | | | | | | An exist | | | | | LINES
YPES A | | | | | | | | | | 8 | | Total 🛊 | | | 7. | | | | | SOIL T | -50 | : -: | | | | | | | | THEEN | | | | | | | | | | TO A | $\neg \neg$ | | | i tat | | | : **:::: | | | 90 | | | • • | 14.0 | | | | | | HOTE: | -60 | H ₂ | . | | · | | | | | " | | | 4. | | | | | | | | | in the second se | | | | | | | | | | والمراجع والمنافية | | *** | = - | | | | | | -70- | , | | | | | | | | } | | | | - | | | | | | ∦ | \dashv | | | F | | | | | | | | · The region | • | ₹ 19 24 | | | | | | | | · - | | | | | | | | } | | GROUNDWATER DATA | DRILLING DAT | <u>A</u> | | | | • | | | 7.4.CO | UNTERED AT13.5 FEET | AUGER 9" HO | | | | | • •• | | }} | | PEET AFTER HOURS | | DLLOW STER
1 FEET | | | | | | }} | AT_ | , | | | | LOG (| of Bor | ING | | | | FREE WATER NOT ENCOUNTERED DURING DRILLING | CME_55 | _DUILL BIG | | | | | | | | 12 · | -
-11 | - الجمعة المسلمان المسلم | * 5 | ſ |)G-2 | - | | | n C. Mi | ARKS: PVC monitoring w | err cosing install | <u>9d</u> | (홍1년)
(국) (조 | | JU | र्ग र न दहुर, | | | | | | £4. | 12154 | | | | | \parallel | | | | · ज | • | GEOTE | CHNO | OGY | | | 926 | NOTATION SHEET FOR DESCRIPTION | OF ADDREVIATIONS | | · · · · | | ouis, Missouri | | | _ | | | · | | · | *, | p | LATE 10 | | | | Thinks a | | 1 1 VIII 1 | - | , | u | | NO. 0 / JU / 03 I | | | tum_MSLCompletion Data_01/13/ | 8Z. He is | S | Δ-00/2 | R STRENGTH,
O - qu/2
o i,s | 181
◇-9v
8,5 0,5 | |---------------------|------------------|--|---|--------------------|------------|--|---| | | DEPTH
IN FEET | | UMIT DRY WEIGH | SAMPLES | (| ASTM D 1900)
LOWS PER FOO
WATER CONTER | 1T,% | | | | Tan. loose to medium dense.
fine to medium. SILT and silty SAND | - Topes | | | J 30 | 40 50 | | | | en e | | SS | 4 | , | 10.00 | | ES | -10- | | | SS | 0 | | Grain Size
Analysis | | DOUNDARIES
DUAL. | - 20- | | | SS | | | Midiysis | | THATE OF GRA | | | | SS | | | | | ION MAY | -
30- | | | SS_ | | | | | ENT THE | | | | SS | | | | | AND THE | -40 | Brown gray, loose, fine gravelly SAN with wood and black organics | ID . | SS | · V O | | Grain Size
Analysis | | TYPES / | | Brown. medium stiff. silty CLAY with sandy DOLOMITE fragments | <u></u> | SS | | P0 | Grain Size | | SOIL | -50 | Boring terminated at 45 feet | | - | | | | | MEEN | | | e e e | | | | | | STA | | | | F 197 | | | | | 07£: | - | | | | | | | | 윤 | - 60 | Meneral Communication (Communication Communication Communication Communication Communication Communication Com
Communication Communication Communication Communication Communication Communication Communication Communication | | , 7 + T = | ::::::::: | | | | | | | 1. 3.45 | | 111111111 | • • • • • • • • • | | | 1 | ᅱ | was a second | ويافساقا | | | | | | | - 70 | 9.60 | · [0, : | | 4111111 | | | | | | | | | 7::::::::: | | :: : ::::::: | | } | | | | | | | | | | | The state of s | 1.7. | | a : | | 141.1111. | | | | GROUNDWATER DATA DRILLING DA | ATA | | | | 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | | | ENCO | DUNTERED AT 33 PEETAUGER 9" | HOLLOW STE | M. | | | · · · · · · · | | | AT_ | | | ~ | | | 1000 | | \parallel | AT_ | PERT APTER HOURS MM_ ORILLER _K | DD LOGGE | Ç: | LOGO | | IN G | | | | FREE WATER NOT ENCOUNTERED CME 55 | | 6
 | - | | | | | REM | ARKS: PVC monitoring well casing instal | led | | מ | G-3 | es. | | | | | 12: 12: <u>1</u> | • * * * * .
• * | | _ • | | | | | | 1.55 | - · · | | | | | | | Transport | — · · · · · · · · · · · · · · · · · · · | | GEOTE | | OGY | | L | 256 | HOTATION SHEET FOR DESCRIPTION OF ABBREVIATIONS | | - | St. Lo | ouis, Missouri | | | | | | | | | P | LATE 11 | | | | The state of s | | ` 'Y=; | <u> </u> | | | e de la companya della companya della companya della companya de la companya della dell 1. .-. .. 是一个人,是一个人,他们是一个人, MO 0 / JU / U J I SHEAR STRENGTH, 181 UNIT DRY WEIGHT Surface Elevation 758 Completion Date 01/19/87 **△**-uu/2 O - 9U/2 Datum MSL STANDARD PENETRATION RESISTANCE DEPTH (ASTM 0 1906) DESCRIPTION OF MATERIAL △ - BLOWS PER FOOT WATER CONTENT, % **⊣**LL Ton. loose to medium danse SAND ŚS Δ Grain Size Analysis 10 55 Grain Size Analysis 20-Brown silty CLAY with dolomite fragments Split spoon refusal at 29 feet 30-STAAPIFI Between -50-60 DRILLING DATA GROUNDWATER DATA ENCOUNTERED AT 24 PEET AUGER 9" HOLLOW STEM Wash Doring From ______ Fert __ FEET AFTER_ _HOURS: LOG OF BORING HOURS MM DRILLER KOO LOGGER ... PERT APTER ___ DRILL RIS FREE WATER NOT ENCOUNTERED DURING DRILLING DG-4 REMARKS: PVC monitoring well cosing installed SEE HOTATION SHEET FOR DESCRIPTION OF ADDREVIATIONS GEOTECHNOLOGY St. Louis, Missouri #### APPENDIX C - - 1 The second secon Mr. Carrie Photo Documentation of Site SITE <u>No.</u>: C-1 Subject Big River with mine tailing dust rising from the pile. Photographor Robert Overfelt COORSE Gene Gunn Dato/11mo January 25, 1988 1030 hrs Diroction North <u> No.</u>: C-2 Subject Area where mine tailings slope are in contact with the Big River Robert Overfelt Gene Gunn Dato/11mo January 25, 1988 1030 hrs Diroction North SITE | No. | : | C- | 3 | |-----|-----|----|---| | Sub | ioe | Ŷ | | Gap A from edge of River after filled #### **Photographor** Bob Overfelt WILHOUS Gene Gunn Dato/ 11mo Jauary 25, 1988 1050 hrs ₩est Mo.: C-4 Subject Wind fencing Box configuration #### Photographer Bob Overfelt Gene Gunn January 25, 1988 1100 hrs Diroction Southeast- SITE -- No.: C-5 Subject Wind Fencing showing tailings accumulation. Photographor Bob Overfelt WILLHOOD Gene Gunn Dato/fimo January 25, 1988 1100 hrs Southwest Mo.: C-6 Subject Trees Planted on north side. #### Photographor Bob Overfelt Wilnoss Gene Gunn Dato/Timo January 25, 1988 1100 hrs. West SITE No.: C-7 Trees planted on north side. Photographor Bob Overfelt **W10000** Gene Gunn Dato/ Timo January 25, 1988 1100 hrs Southwest Subject C-8 "H" Gap filled Photographer Bob Overfelt WILHOUS Gene Gunn Dato/ Timo January 25, 1988 1129 hrs Northeast . ^ SITE No.: Co Trees & grass planted on west side of pile near gap I Photographor Bob Overfelt Wilnoop Gene Gunn Dato/ Timo January 25, 1988 1130 brs Northeast Me.: C-10 Subject Berm with Gap "I" drainage pipe. Photographor Bob Overfelt Wilhood Gene Gunn <u>Dato/Timo</u> January 25, 1988 1200 hrs North SITE No.: C-11 Subject Gap "I" drainage pipe from Big River. Photographor Bob Overfelt Witnoop Gene Gunn Dato/11mo January 25, 1988 1230 hrs. Diroction East No.: C-12 West side where tailings meet river. างก่อกายอเอศๆ Bob Overfelt Wilnoss .. Gene Gunn Dato/Timo January 25, 1988 1245 hrs. Direction Southwest ## SITE Z 0 Subject meet river Cut back of river where tailings Photographor เพียกอออ Bob Overfelt Dato/Timo Gene Gunn Diroction January 25, 1988 1250 hrs. Southeast C-14 Subject Original drainage structure. Bob Overfelt Gene Gunn January 25, 1988 Diroction Southwest SITE Mo.: C-15 Gap "E" showing tailings and bedrock. Photographor Bob Overfelt Witnooo Gene Gunn Dato/ Nimo January 25, 1988 1320 hrs. Diroction Southeast Mo.: C-16 Subject Gap "E" draining tailings toward river. Photographor Bob Overfelt CCOMIN Gene Gunn Dato/11mo January 25, 1988 1325 hrs. Diroction West SITE No.: C-17 Dam above Gap "E" Photographor Bob Overfelt MICHOOO Gene Gunn Dato/11mo January 25, 1988 1330 hrs Diroction Southwest No.: Subject Photographor Wilnoss **D**010/11mo Diroction end of Photographic Record ## APPENDIX D Sample Results Heavy Metals in Desloge Tailings Pile ## CONCENTRATIONS OF LEAD, CADMIUM, AND ZINC FROM SAMPLES TAKEN AT THE BIG RIVER-DESLOGE TAILINGS PILE | Sample | Me | etal Conc; ng/g | | |-------------|------------------------------|------------------------------|------------------| | No. | РЬ | Cd | Zn | | 0900 | 1670 | 37.8 | 1670 | | D901 | 1540 | 38.9 | 1700 | | D902 | 1420 | -27.4 | 1150 | | D903 | 1190 | -11.7 | 330 | | D904 | 1420 | 54.8 | 2380 | | D905 | 2590 | 30.2 | 1320 | | D906 | 3840 | 34.9 | 1750 | | D907 | 3560 | 26.5 | 1380 | | D908 | 970 | 6.8~ | 875 | | D909 | | 15.6 | 950 | | 0910 | 1800 | 15.7 | 1040 | | **D911 | 1360 | 25 | 1080 | | D912 | 2310 | 40.0 | 1890 | | D913 | 4470 | 18.3 | 821 | | D915 | 1530 | <u>-</u> 13.8 | 680 | | D916 | 825 | 15.7 | 531 | | D917 | 3140 | 31.7 | 1440 | | 0918 | 1020 | - 17.4 | 637 | | D919 | 958 | 21.4 | 798 | | D920 | 2710 | 29.9 | 1380 | | D921 | 1570 | 8.0 | 511 | | D922 | 997 | 7.0 | 406 | | D923 | 835 | 8.0 | 373 | | D924 | 896 | 7.5 | 437 | | D925 | 1310 | 9.8 | 373 | | D926 | 1080 | 13 | 297 | | ~- D927 | 983 | -11.8 | 354 | | D928 | 877 | 16.5 | 518 | | D929 | 964 | 13.8 | 373 | | D930 | 1380 | 15.0 | 582 | | D931 | 1010 | 18.5 | 698 | | D932 | 1150 | 21.5 | 816 | | D933 | 951 | 11.6 | 233 | | D934 | 1620 | 20.5 | 840 | | D935 | 5530 | 46.9 | 404 | | . D936 | 1570 | 24.2 | 933 | | D937 | 1400 | 8.7 | 525 | | D938 | 1330 | 19.8 | 733 | | D939 | 1140 | 215 | 783 | | D940 | 2380 | 19.2 | 1380 | | D941 | 1120 | - 9.2 | 558
716 | | D942 | 1410 | = 15.4
68.2 | 715 | | D943 | 4320 | 68.2 | 3580 | | D944 | 1800 | 15.8 | 1210 | | 0945 | 1710 | | 1090 | FROM: WIXON, B.G., ETAL. UNIVERSITY OF MISSOURI-ROLLA, A STUDY OF CHAT AND TAILINGS FROM THE OLD LEAD BELT OF MISSOURI FOR AGRICULTURAL LIMESTONE. DECEMBER, 1983. | . | Zn | 1350 | 344 | 439 | 644 | 693 | 519 | 560 | $\ddot{\sim}$ | 5 | 12 | \approx | 2 | × | 3990 | ∺ | Ξ. | ~ | \mathbf{z} | \approx | \sim | ω | = | $\bar{\omega}$ | Ñ | Ō | 2090 | S | 2410 | σ | |------------|-----|------|-----|-----|-----|----------|-----|-----|---------------|----|-----------|-----------|-----|----------|-------|----------|----|---|--------------|-----------|---------------|---|----|----------------|----|-----------|-------|-------------|-------------|---------| | Conc: ug/g | Cd | 7 | ૅ | c, | œ | <u>.</u> | ഹ | | 4 | -4 | o | လ | - | - | ഹ | <u>.</u> | ò | 2 | 'n | m | _ | - | 'n | ထဲ | 9 | Š | 44.5 | ų, | - | 78.6 | | Metal C | Ьb | ā | 33 | 4 | ã | 3 | 54 | D. | 2 | 7 | \approx | 36 | 20 | 6 | ထ္ထ (| 83 | 95 | 7 | 18 | 23 | $\frac{1}{2}$ | 3 | 3 | 61 | 82 | 2 | 4070 | = | E (| 69 | | Sample | No. | 34 | 7 | 7 | 7 | 5 | 35 | 3 | 5 | 5 | E) | <u>.</u> | œ٠. | <u> </u> | 8 | 3 | 3 | 8 | 9 | 8 | ₽: | 9 | 9 | | | \succeq | 097.3 | \subseteq | \succeq 1 | <u></u> | ... REFERENCES Draft, 1981. United States Geologic Survey, 1982. Missouri 7.5 Minute Series i i ίω Plan for Lead Mine Tailings (Topographic), Hudwalker, Marvin, February 2, 1988, Person Desloge, Missouri, Ġ Tailing Discharges to Big River, John and Hasselwander, Gerard, January 1980, Control of Mine Personal communication, Inc., Farmington, 9 Czarneski, Conservation: rrancols County Landfill, Desloge, Missouri, Manager by Lead Mining, Missouri Department of 7. 8 Gale, N. etal, Lead Concentrations in Edible Fish Fillets Collected ,9 Missouri Burris, James, February 1, Mattson, C., November 13, 170,, Person, Irvine, California, personal communication, Project Bluff, Missouri, 1, 1988, Personal communication, Dir Resource Poplar Bluff Office, Director, O. Burns & McDonnell Engineers, Desloge Tailings P Pile Management Plan Poplar Possible use of Chat and Tailings from the Old Lead Belt of Missouri Herschlach, Robert, April 13, 1987, Resout Administrator, MDNR-Poplar Bluff, Missouri, Besout 13, 1987, Resource Conservation, Soil Quality July 1976. Criteria for Water, U.S. Environmental Protection Code Code of Federal Regulations, Protection of Environment 40, Parts EPA Regulatory Status for Chemicals in Drinking Water, July 1987. Agency, - 16. Schmitt, C. and Finger S., 1982, The Dynamics of Metals from Past Present Mining Activities in the Big and Black River Watersheds,
Southeastern Missouri. - 17. Gale, Nord, etal, Historical Trends for Lead in Fish, Clams and Sediments in the Big River of Southeastern Missouri, University of Missouri-Rolla. - 18. Air Quality Data at Flat River, Missouri, 1981, 1982, 1983, Missouri Department of Natural Resources. - 19. Climatic Altas of The United States, 1979 United States Department of Commerce. - 20. Soil Survey of St. François County, Missouri, August 1981, National Cooperative Soil Survey. - 21. Buckley, E.R., 1908 Geology of the Disseminated Lead Deposits of St. François and Washington Countries: Missouri's Bureau of Geology and Mines, 2nd Ser., Vol 8, PA. 1. - 22. Missouri Division of Geological Survey and Water Resources, 1861, The Stratigraphic Succession in Missouri. - 23. Missouri Division of Geological Survey and Water Resources, 1983, Ground Water Maps of Missouri. - 24. Johnson, Dennis, December 2, 1987, personal communication, Assistant Manager Water District Flat River, Missouri. - 25. Wixson, B. G., etal, Influence of Tailings from the Old Lead Belt of Missouri on Sediments of the Big River, University of Missouri-Rolla. - 26. Rand McNally's Road and Reference Atlas, 1982. #### APPENDIX A 14 <u>-</u> 17 Tare and the second in the second of maraja naja Juga Trajas ------ المراجعة المراجعة المراجعة . - --- The engine The state of s ring The Table Section 1. Section 1. the state of the state of the te series of rejug Turk selegar ne su The Later The second i Taring e e Maga EPA Form 2070-12- 77.4. | | 02 SITE N | | |---------|------------|--------| | 1 STATE | IUZ SITE N | IUMBER | | | | | | мо | D9811268 | 100 | | | | | | | 77 | · | | | · · · · · · · · · · · · · · · · · · · | | | |--|---------------------------------------|----------------|---|---|---|--|--------| | | | _ | | | | | 2.0 | | | PO | • | DOUS WASTE SIN | | I. IDENTI | ··· | | | EPA | | Preliminary | | | MO I | 2 SITE NUMBER
D981126899 | l | | | PART I | - SITE INFOR | MATION AND ASS | ESSMENT | · · · · · · · · · · · · · · · · · · · | | - | | SITE WAME AND LOCATION | | | | <u> </u> | | | | | TE NAME (Legal, common, or | descripti | ve_name of si | - I | a respective | , OR SPECIFIC LOCA | | j | | River Mine Tailings | To the second | | Approxim | ately 1 mile | e northwest of Desi | loge, Missouri | | | TY | · · · · · · · · · · · · · · · · · · · | ·. | 04 STATE | 05 ZIP CODE | 0.6 COUNTY | 07 COUNTY 0 | 8 CONG | | oge | | | мо | 63601 | St. Francois | CODE | DIST | | ORDINATES LATITUDE . | LONGITUD | g | | · - · · · · · · · · · · · · · · · · · · | | | | | 53' 11".4N | 90° 33′ 0 | 0 " " 0W - | 1 | | New York | _ | - | | | | | | : | | ····· | | | RECTIONS TO SITE (Starting | from near | est public ro | ad) | * **** | • . | - | | | Hwy 67 south to Desloge,
der of the Big River on it | From Desl | oge the site | is approximate
sides. | ly 1 mile no | orthwest and is bo | rdered by a dis | trict | | der er ens bry nrver en re | | | | -12 | • | | | | | · · · · · · · · | | | | | | | | RESPONSIBLE PARTIES | | | ······································ | 1 = 8 a, 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | | | | NER (If known) | | · · | 02 STREET | (Business, | mailing, resident: | ial) | | | Francois County | | | | | | | | | TY | . #1314 | | 04 STATE | 05 ZIP CODE | 06 TELEPHONE NUMBI | ER | | | oge | | · | МО | 63601 | (314) 431-6505 | | | | ERATOR (If known and diffe | rent from | owner) | 08 STREET | (Business, | mailing, resident | ial) | _ | | Francois County Environmen | tal Corp. | · . | | | | | | | TY | # P. | 4 | 10 STATE | 11 ZIP CODE | 1,2 TELEPHONE NUMBI | ER | | | oge | -, | | МО | 63601 | (314) 431-4768 | | - | | PE OF OWNERSHIP (Check one |) | - - | | 1 2 1 4 | • | | 3 . | | A. PRIVATEB. FED | ERAL: | · · · | | C. STATE | X D. COUNTY | E.MUNICIPAL | | | | .: | (Agency n | ame) | | | | ĺ | | F. OTHER: | 7. | | | G. UNKNO | OWN | | | | | (Spe | cify) | | | | | | | NER/OPERATOR NOTIFICATION | ON FILE (C | heck all that | apply) | Teet oy | | .* . | | | RCRA 3001 DATE RECEIVED: | | _B. UNCONTROL | LED WASTE SITE | (CERCLA 10 | 3 c) DATE RECEIVED | :c. | NONE | | | /DAY/YR | | · · - · - · - · · · · · · · · · · · · · | eries. | | MO/DAY/YR | | | CHARACTERIZATION OF POTENT | | | | | | | | | SITE INSPECTION | <u> BÂ (C</u> | heck all that | | عد خا∓ات | | | 1 | | X YES DATE 1/25/88 | | X A. EPA | X B. EPA CON | TRACTOR | _C. STATED. | OTHER CONTRACT | OR | | MO/DAY/YR
NO | | E. LOCAL | HEALTH OFFICE | AL F. | OTHER: | | | | | | | | | | ecify) | | | | CONT | RACTOR NAME(S |): E & E/FIT | | | | | | | | | 12 UPS DE OR A | | - | | | | TE STATUS (CHECK ONE) | mtite | C. UNKNOWN | 03 YEARS OF OF | Control of the second | 1050 | ********** | 1 | | A. ACTIVE XB. INAC | ···· | _c. outrioun | | 1929
GINNING YEAI | R ENDING YEAR | UNKNOWN | 1 | | SCRIPTION OF SUBSTANCES PO | CCIPIU DDE | CENT VNOUN | | GINNING TEAD | R ENDING TEAR | ······································ | | | | | | | non Codmin | | | `` · | | tailings which contain a tailings cover approximate | ly 600 acr | os at a depth | of 0-100 feet | within a " | norse shoo of the | Big Rivor. | ļ | | SCRIPTION OF POTENTIAL HAZ | ADD TO FATU | TRONMENT AND | OR PORILLATION | | · · · · · · · · · · · · · · · · · · · | | | | | | | | خ خ
د دیسوجه دد | | | | | ion of tailings into the B
ntial health hazard from t
ntial for landfill organic | he dispers | ion_of lead 1 | aden dust in t | he air. | S and Cd | | | | RIORITY ASSESSMENT | Cheracing | agents to so | Idoleo alla mot | 11120-10, 21 | i, and cu, | | | | | ck one = T | fohigh or mad | ium is shocked | complete=1 | Dort -7 - Wooto Infe | | | | IORITY FOR INSPECTION (Che Par | t 3 - Dosc | ription of Ha | zardous condit | ions and Inc | cidents) | ormacion and | - | | A. HIGH | B. MEDIUM | | C. Low | | D. NONE | - | | | nspection required (In romptly) | spection r | equired) | (Inspect on ti
available bas | me (No | further action near
mplete current dis | eded. | | | INFORMATION AVAILABLE PROM | • | , <u></u> | | TB) S. COR | | POSTCION LOEM! | | | NTACT | | | /Organization) | e detaile de la company de
La company de la | - · · · · · · · · · · · · · · · · · · · | 03 TELEPHONE N | IIMBAP | | Gunn | | EPA Superfun | | | e∯er | | | | RSON RESPONSIBLE FOR ASSEST | SMENT | 05 AGENCY | 06 ORGANIZATI | · · · · · · · · · · · · · · · · · · · | TELEPHONE NUMBER | (913) 236-2856 | | | rson responsible for asses.
Overfelt | | E & E | FIT | 70 D. 198 | 13-432-9961 | 08 DATE . | | | V 4 5 4 5 4 5 | F-2-4 | | L | · | 13-434-3301 | 4/27/88
MO/DAY/YR | . [| # POTE...IAL HAZARDOUS WASTE SITE PRELIMINARY ASSESSMENT PART 2 - WASTE INPORMATION | I. IDENTI | ICATION | |-----------|----------------| | 01 STATE | 02 SITE NUMBER | | MO | D981126899 | | | ATES, QUANTITIES, AN | D CHAI | ACTERISTICS | | | • | | | |--------------------|---|----------------------------|--|--|----------------|---------------------------------------|--|--| | SICAL | STATES | 02 WAS | TE QUANTITY AT SIT | E 03 WASTE CHAR | ACTE | RISTICS | | | | | | (Measu | res of waste quant
oust be independent | i- (Check all the | | | | **. | | SOLID | X E. SLURRY | C168 L | mat pe independent | X A. TOXIC
B. CORROS | | E. | SOLUBLEI. | HIGHLY VOLATILE | | POWDER | F. LIQUID | | s - 2-± | B. CORROS | IVE | r.: | INFECTIOUS J. | EXPLOSIVE | | SLUDGE | G. GAS | • | TONS | C. RADIOA | CTIVE | E | LAMMABLE K. | REACTIVE | | OTHER | | CUBIC | YARDS ~ 4 million | · | | | | INCOMPATIBLE | | 4 | (Specify) | | | | | | | NOT APPLICABLE | | 4 | (0)00-27/ | NO. OF | DRUMS | | | | | | | JASTE T | | | | | | | | | | ` | SUBSTANCE NAME | | 01 GROSS AMOUNT | 02 UNIT OF MEAS | URE | 03 COM | MENTS | | | ORY | SLUDGE | | | | | - | | | | , | OILY WASTE | | | | | 7.0 | | | | · | SOLVENTS | | | | ,- <u>e</u> - | 14 4 7 | | | | , | | | | | | | | | | ه ر | PESTICIDES | | | | 1 | 2.5 | | | | _:
\ | OTHER ORGANIC CHEMI | | | | | .4 th V = . 1 t | | | | <u>:</u> | INORGANIC CHEMICALS | - / | <u></u> | | tr- r | ļ <u>.</u> | | · | | | ACIDS | | | | | <u> </u> | | | | * | BASES | | ¥ | | | New Lay | | | | | HEAVY METALS | <u> </u> | Unknown | | _ * | 2 2 2 2 2 2 2 | Zinc, Cadmium | | | .ZARDOU | S SUBSTANCES (See Ap | pendix | for most frequent | ly cited CAS Num | bers | <u>)</u> | | | | EGORY | 02 SUBSTANCE NAME | 1.5 % | 03 CAS NUMBER | | | | 05 CONCENTRATION | 06 MEASURE OF
CONCENTRATION | | ` | Lead | | 7439921 | mine tailings p | | | mean 2,077 | ug/g | | 4 | Zinc | | 7440-66-6 | mine tailings p | ile . | <u>. 15 </u> | mean 1,226 | ug/g | | ٦ | Cadmium | | 7440439 | mino tailings.p | ile | | mean 26 | ug/g | | | Copper | | 7440508 | mine tailings p | ile | | Unknown | | | | <u> </u> | | <i>a</i> | | ÷, , | | | | | 4 | | | | | : | · ; | | | | 4 | | | | | | | | | | 4 | <u> </u> | | - 91 | ~ | | | <u> </u> | <u> </u> | | | | | 1794.4 | · · · · · · · · · · · · · · · · · · · | | | | | | A | | | | | 7.5 | | | | | 4 | | | | | | | | | | | | | | *1 | *1 · · · · | | | · · · · · · · · · · · · · · · · · · · | | <u> </u> | | | | | | <u>*</u> | | | | 1 | <u> </u> | | | | | | | | | 4 | <u> </u> | | | | <u> </u> | · · · · · · · · · · · · · · · · · · · | | | | | <u> </u> | | | | | <u> </u> | | | | 74
 | | | · . | | | | | <u> </u> | | | S (See Appendix for | CAS NU | mbers) | | , | 1-4- | | · · · · · · · · · · · · · · · · · · · | | EGORY | 01 FEEDSTOCK N | AME | . 02 CAS NUMBER | CATEGORY | | 01 PEED | STOCK NAME (| 2 CAS NUMBER | | 'DS | | | ٠.د. | FDS - | | | | <u> </u> | | DS | | 4 . | | FDS | | | | | | * DS | | | · = | PDS | | | | | | DS | | | ' | PDS | | - A | | · 1 =- | | | S OF INFORMATION (Ci | te spe | cific references, | e.g., state file | | | alysis, roports) | | | | ction Plan for Lead
ilings from the old
Rolla. Dangerous Pr | Mine T
Lead E
operti | silings, Desloge,
elt of Missouri fo
es of Industrial M | Missouri, Draft or Missouri for Adaterials 6th Ed. | EPA 1
gricu | files.
ultural
Irving S | A study on the pos
Limestone, Univers | sible use of
city of | | 4 | - | | tere in the contract of co | • • | | | | | | 4 | | - | | | ٠ | | | | | 7 | | | | <u> </u> | <u>-</u> | | | | | 4 | ; | | | ·, | | | | | | 1 | | · · · · · · | <u></u> | . · · | | <u> </u> | | | | DRM 207 | 70-12 (7-81) | 74., | - | **** | ina. | ·* | | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | #### r Valle La la la Maria de la Calenda POTEN LAL HAZARDOUS WASTE SITE I. IDENTIFICATION 01 STATE 02 SITE NUMBER MO D981126899 PRELIMINARY ASSESSMENT EPA PART 3 - DESCRIPTION OF HAZARDOUS CONDITIONS AND INCIDENTS HAZARDOUS CONDITIONS AND INCIDENTS 02 OBSERVED (DATE: _____) X POTENTIAL ALLEGED A. GROUNDWATER CONTAMINATION 04 NARRATIVE DESCRIPTION PULATION POTENTIALLY AFFECTED: s is potential for ground water contamination from surface water because faults exist in the site area. The on-landfill may release organic chelating agents which could release heavy metals into the ground water. POTENTIAL B. SURFACE WATER CONTAMINATION 02 ___ OBSERVED (DATE: ALLEGED PULATION POTENTIALLY AFFECTED: 04 NARRATIVE DESCRIPTION the site and several miles downstream the bottom of the Big River is lined with mine tailings. This has raised the site and I levels slightly in the water. There is potential for more mine tailings to erode into the river. 02 OBSERVED (DATE: C. CONTAMINATION OF AIR . Hall X POTENTIAL 04 NARRATIVE DESCRIPTION PULATION POTENTIALLY AFFECTED: laden dust blows off the top of the mine tailings pile. D. FIRE/EXPLOSIVE CONDITIONS 02 OBSERVED (DATE: POTENTIAL PULATION POTENTIALLY AFFECTED: 04 NARRATIVE DESCRIPTION known or reported to date 02 OBSERVED (DATE: E. DIRECT CONTACT POTENTIAL PULATION POTENTIALLY AFFECTED: 04 NARRATIVE DESCRIPTION le are currently and have in the past driven all terrain vehicles (ATVs) on the mine tailings pile for pation. Also landfill workers are exposed to the tailings daily. 02 OBSERVED (DATE: F. CONTAMINATION OF SOIL POTENTIAL ALLEGED . 04 NARRATIVE DESCRIPTION EA POTENTIALLY AFFECTED: 600 , (Acres.) mine tailings cover approximately 600 acres. OBSERVED (DATE: G. DRINKING WATER CONTAMINATION POTENTIAL ALLEGED PULATION POTENTIALLY AFFECTED: 04 NARRATIVE DESCRIPTION - -: known or reported to date H. WORKER EXPOSURE/INJURY OBSERVED (DATE: POTENTIAL ALLEGED RKERS POTENTIALLY AFFECTED: 04 NARRATIVE DESCRIPTION known or reported to date OBSERVED (DATE: 04 NARRATIVE DESCRIPTION POTENTIAL ALLEGED 1. POPULATION EXPOSURE/INJURY PULATION POTENTIALLY AFFECTED: | ····· | | HAZARDOUS | WASTE SI | TE | I. IDENTIFICAT | 1011 | |---|--|--------------|----------------------
--|---|---------------------------------------| | PA | PRELIF | eea Tradii | essment | in the second se | 01 STATE 02 SIT | E NUMBER | | PART | 3 - DESCRIPTION C | F HAZARDO | US CONDIT | TIONS AND INCIDENTS | 1 10 1 103811 | & U U J J | | AZARDOUS CONDITIONS AND IN | CIDENTS (CONTINU | | | / ¥** <u>*</u> | | · · · · · · · · · · · · · · · · · · · | | J. DAMAGE TO FLORA | | 02 <u>X</u> | OBSERVED | (DATE: 1/25/88) | POTENTIAL | ALLEGED | | RATIVE DESCRIPTION
tural recovery of vegetation | on has accurred | The 600 | acres of | mine tailings are v | irtually bara | | | tural recovery or vegetation | on has occurred. | 114 000 | actes of | mine callings are v | ittuarry bate. | 11142 | | | | | | en en 17.
Transport de la grande de 17. | | | | | | | | | | | | K. DAMAGE TO PAUNA | * °= -, | | OBSERVED | (DATE: | POTENTIAL | ALLEGED | | RATIVE DESCRIPTION (Include | ** . * | | | | | _ | | ted levels of Pb, Cd, and | Zn were <u>round</u> in | a study t | nac exami | ned algae. | | 54
 | | | | | | | | | | L. CONTAMINATION OF FOOD C | HAIN ^- | 02 | OBSERVED | (DATE: | POTENTIAL | ALLEGED | | RATIVE DESCRIPTION | Median 1 | | | Far and the second seco | | **** | | m feeding fish in the Big !
t for human consumption th | River are known t | o have el | evated le | vels of Pb in their | edible tissue. | Fish are | | for human consumption the | rough sport fishi | ng rrom t | ne Big Ri | ver. o name | | 7 | | | | | | en e | | • | | | e the project | 1 | | ere elektronige | | · | | M. UNSTABLE CONTAINMENT OF | WASTES | 02 <u>X</u> | OBSERVED | (DATE: -1977) | POTENTIAL | ALLEGED | | lls/runoff/standing liquid | s/leaking drums) | | | | | 4 | | ULATION POTENTIALLY AFFECT | | 04 NARR | ATIVE DES | CRIPTION | | | | on of mine tailings into the | he Big River. | | | | | | | | ************************************** | | | | | | | | | | | | | | | N. DAMAGE TO OFFSITE PROPER | RTY | 02 <u>X</u> | OBSERVED | (DATE: 1977) | POTENTIAL | ALLEGED | | RATIVE DESCRIPTION | en e | | 111 | | | | | g River bottom is lined w.
contain elevated Pb, Cd, | ith mine tailings
and Zn levels. | tor seve | rai miles | downstream from th | e site and the b | iota in the | | | * *** | | | And the second second | | - | | | | | | | | | | O. CONTAMINATION OF SEWERS
STORM DRAINS, WWTPS | · · · · · · · · · · · · · · · · · · · | 02 | OBSERVED | (DATE:) | POTENTIAL | ALLEGED | | RATIVE DESCRIPTION | | | | | | | | known or reported to date | | | | | | - | | | | | | | | | | | Tre | | | f April 1 | | • | | | | | | | 0.0000000000000000000000000000000000000 | | | P. ILLEGAL/UNAUTHORIZED DU | MPING | 02 | OBSERVED | (DATE: | POTENTIAL | ALLEGED | | RATIVE DESCRIPTION
known or reported to date | | | | | | | | thown of reported to date | e de la companya de
La companya de la co | | | | | | | | The State of S | | | | | | | | TER TE | | | · | | | | CRIPTION OF ANY OTHER KNOW | N, POTENTIAL, OR | ALLEGED H | AZARDS | | | | | | | | | Water a | | | | | | | | | | • | | | | | | on workstyn yn ei
Gwenner ac'r | | | | TOTAL POPULATION POTENTIAL | LY APPECTED: 27,7 | 39 (3-mil | e radius) | | | | | NMPD#6 | | | | | | | | DAMENTS | | | | <u> </u> | | | | - · | | | | in in the second of | | | | | Series de la company la
La company de la d | | | The second secon | | | | · | 1 | | | | | | | JRCES OF INFORMATION (Cite | | | | files; sample analy | | | | ol of Mine Tailings Discha
minary Investigation on the
Southeastern Missouri, P | rge to Big River, | Dr. John | Novak 19
Past and | 80, EPA files.
Present Mining Acti | vities in the Ri | g and Black | | Southeastern Missouri, P | reliminary, EPA f | iles. | | *************************************** | | , | | | | | | =_ | | | | RM 2070-12 (7-81) | | | | + F 3+ | | | | , / | | | | | | en en | | | | | | المتعارة والمتعارة | | of Lower | | • | السيعة والأقراء أدار والرسيسان | | | | | | | | ************************************** | | | | | | | | | | | | iga yan Sanasa wasa k | r party with bridge of war. | #### APPENDIX B ****\$**- Well Logs for Monitoring Wells Surrounding On-Site Landfill ### APPENDIX B Well Logs for Monitoring Wells. Surrounding On-Site Landfill MUDYALKER & ASSUCIAIES, 1170. LETTER OF TRANSMITTAL Engineers - Surveyors P. O. Box 676 FARMINGTON, MO 63640 11/12/87 (314) 756-6775 Mr. Bob overtelt Ecology & Environment Inc. Deilege Tailings Pile 64-05 Metcult Building 3 - Soite 424 Overland Park KS 66202 E ARE SENDING YOU ☑ Attached ☐ Under separate cover via_ __the following items: X Prints ☐ Shop drawings ☐ Plans ☐ Samples □ Specifications □ Copy of letter . Change order DESCRIPTION COPIES DATE Plan of Monitoring Well locations Well Detail HESE ARE TRANSMITTED as checked below: □ Approved as submitted ☐ Resubmit____copies for approval ☐ For approval ☐ Approved as noted ☐ Submit _____copies for distribution ∑ For your use :... - Executions : Return corrected prints **区** As requested ☐ For review and comment ☐ ____ ______19____ PRINTS RETURNED AFTER LOAN TO US FOR BIDS DUE. REMARKS_ COPY TO He Leval ken H oneleauroa are not as noted, kindly notify us at ones. PC000001740-1 (NEUS) ha, 65-3 cm 01471. | 4 | um MSL Completion Date 01/16, | <u> </u> | WEIGH | ES . | ∆-uu/2
0.5 | Q = QU/2 | ◇ - 9 v
2,0 2,9 | |--------------|--|-------------|--|--------------|---------------------------------------|---------------------------------------|---------------------------| | ± 5 | F | r | | IPL E | STANDARD I | PENETRATIO | N RESISTANCE | | PT | DESCRIPTION OF MATERIAL | | r DRY | SAMPL | ∆٠٤ | (ASTM D 1586
BLOWS PER F | 00T | | N I | * . | | 25
F 80 | | PL | O 30 | 40 50 | | | Tan to gray, very loose to loose | | | · ". | <u> </u>
| | | | | slightly silty fine SAND | | | SS | Λ | } | | | | becoming gray and more silty below 14 feet | | | | · · · · · · · | | 1 | | -10- | Market of Community Communit | ·
 | n was | SS | · · · · · · · · · · · · · · · · · · · | | | | | | | i
Santa S | | | · | Grain Si | | | | | re i | SS | .∇ | | Analysi | | | the state of the second | : - | | 14 3 4 Co | | | | | -20- | | | 5- TF 3- | SS | | | | | | i de de la composición del composición de la com | ~ | ozta | | | | Grain Si | | | 9-2 | | ا منيد | SS | Δ | | Analysi | | | Intermixed gray: loose to medium dense. silty clayey SAND. to sandy | | 7+. | 10. j. | | | | | -30- | clayey SILT | | | SS. | ************ | | | | | wada ya wasan wasan wasan | | ا چانجد | C. | | | Grain Si | | | | | م من | SS | Δ. | ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; | Analysi | | | Auger refusal on SANDY DOLOMITE at | | | | | | | | 40 | 37.5 feet | | المراجعة المالية | T († *- | | | | | | | | | 1,7,1 | | | | | | • | | | -, 1 | | | | | <u></u> | | | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1 | | | | | | 50 | Solve | | | | | | | | | State Section 1 | | | | | | | | | | | | | * | | | | 60 | | | ÷ | | | | | | - | | - | ^{रतरक्} र कर , | ٠ | | | | | | | ĺ | | | | | | | | | | | | | | | | 70 | To the same | ľ | | | | | | | | | | اد رونهمود
د | | | | | | | | ĺ | TT. | \$ <u>\$</u> | | | | | | | | 774 | | | | | | | GROUNDWATER DATA DRILLING I | ———
DATA | | = +4,24 | | L | | | | 1 46 | | in de rega
es | ≠
.5.g | | | | | | AUGER 9" | |)₩ [®] ŚTEM | | , s | | | | AT | | KD0 | | | LOG |)f Bop | RING | | | FREE WATER NOT ENCOUNTERED CME 55 | | ILL AIG | 'r ,- | | | | | | ` # in * . | 1122 | ر است.
با استاده | •= | 1 | JG-1 | | | пс.МА
— | RKS: PVC monitoring well cosing insta | LIAG | | | | | | | | | | 7, | * + <u>‡</u> | | | _ f <u>e</u> | | | A Comment of the Comm | | ، چ ^{ہو} ت دی۔
سی سیموج د | | GEOTE | | * * * · · | | SEE N | OTATION SHEET FOR DESCRIPTION_OF ABBREVIATIONS | | | | St. L | ouis, Missou | | | | | * *** | | | | { | PLATE | | | g of the Market of the Control th | •• | ি . একিকা
কিন্ | | | | | | | | | | | | | | MOTE: | 1 1100 | , co , | | <u> </u> | | | | | | |----------|--|--|--|-------------------------------|--------------------|------------|---------------------------|--| | Sur | face Elevation 794 | Completion Date 01/13/87 | | | Δ-00/2 | | STRENGTH
- QU/2 | | | Date | um MSL | completion date <u>alt/13/0/</u> | WEIGHT
LUE | - S | 0.5 | 1.0 | 1.5 | ♦ - 3 v
2,0 2,5 | | | = | | ₩ ₹ | ٦ | | | | N RESISTANCE | | FEET | | - | T DRY WEK | SAMPLES | | (A: | STM D ISGG)
DWS PER FO | * | | וע | DESCRIPTION | OF MATERIAL | UNIT S | Ŋ. | PL | | ATER CONT | ENT. % | | ᄝ | | | 3 | 1 | 10 | ΣÒ | 30 | 40 50 | | | Gray. loose. SAND | With zones of | | . :- | | | | - | | | silty to clayev S | ΔŅD | 177 1874 | - | | | | | | | ** ** -= - | • | - TF | SS | Δ | | | 1.1.111 | | | · · · · · · · · · · · · · · · · · · · | • | 1 · · · · · · · · · · · · · · · · · · · | | 1 | | | Grain, Siz | | -10- | | - | | SS | | P | | Allalysis | | | tower . | | | | | ` , : : | | | | | Gray. very loose. | sandy to slightly | | SS | Δ | | | | | | claýey SIĹT | | | 1 25 | | . : : : | | | | 20 | | | | SS | Λ <u></u> | · · · · | | | | | · · · · · · · · · · · · · · · · · · · | | | | | :::: | • • • • • | | | \dashv | in the second se | ta. | | SS | <u>k</u> | нс | , | Grain Siz
Analysis | | \dashv | | t de la companya l | 7 | - | | | | Allarysis | | 30- | * | | | <u> 55</u> | : : <u>,</u> . : . | .:: : | : :::: | 1 1 1 1 1 1 1 1 1 1 | | 30- | √ Medium stiff. dan | k brown and gray. | <u> </u> | 22 | : : : : : : | | | Δ
S-8* | | | silty CLAY | | r marani.
Lini sata | · •
. • | | ::::::: | | 11711 | | | Split spoon refusa | on SANDY DOLOMITE | 75 | | ::::::: | | | i ikiii | | | at 30.5 feet | | | | | | | 1-m | | 40- | :
و ریدیست. | | S. fi Taga | - | | . | | | | | • | | | | | ::::: | | 1 | | | 45 mm when the | * | | | | | | | | | | ······································ | 1.2 | | | ::::: | | | | 50- | | - | | - | | - | | | | | | 75 = . | | | | | | | | \neg | | terio | | 1.5 | | ::. : | | : | | | - | r e e e e e e e e e e e e e e e e e e e | | | | ::: : | | | | 60 | · * | | . 7 | | | | | <u>: :::::::::::::::::::::::::::::::::::</u> | | <u> </u> | | | Total. | • | ::::: | ::::::::: | | | | | • • • | • | * 12 | _ | : : : : : . | ::' : | | | | | e de serve | | ــي.⇒ ن | | | | | | | 70 | وهي النبي المنظ | | '()= <u>z</u> , | | | : : : . | | | | 70 | | 1 | · | | | : : : : | | : ::::::::::::::::::::::::::::::::::::: | | | | | | | | :::::: | | . 61111161 | | | | * - | | · - | | ::. | | | | | | 4. | | =1-12-4 | | | | | | | GROUNDWATER DATA | DRILLING DATA | <u> </u> | ٠.,. | - | | | | | | GROUNDWATER DATA | -: . | La Carta
La Carta de | 7 7 1 | | | | | | ENCO | UNTERED AT 13.5 FEET | | LOW STE | X | | | | 5 Te | | | FEET AFTERHOU | | | | | a n | BOR | ING | | AT | + | | LOBGE! | • • | | ₩ ₩ | | | | | FREE WATER NOT ENCOUNTERED DURING DRILLING | <u>UIIL_UU</u> | THICK MI | - | _ | | | | | REMA | ARKS: PVC monitoring: | well casing installa | d |
 | _ | DC | 3-2 | | | | | J. ——— | F.31 | | | | | \$ | | | The state of s | | | er ve
Ver | · . | | | وپيود د | | | | r tu | | 1 0 | PEP | 5000 | PRARATE | ~~~ | SEE NOTATION SHEET FOR DESCRIPTION OF ABBREVIATIONS St. Louis, Missouri STRATIFICATION LINES REPRESENT THE APPROXIMATE GOUNDARIES BETWEEN SOIL TYPES AND THE TRANSITION MAY BE GRADUAL. -50 140 -
30 -20 DEPTH ENCOUNTERED AT 33 8 SEC NOTATION SHEET FOR REMARKS: 8 0 Surface Datum IN FEET FREE WAYER NOT INCOUNTERED DURING DRILLING Boring GROUNDWATER Brown with w Brown. medium stiff. with sandy DOLOMITE fine <u>.</u> JSK Elevation FECT AFTCH PEET AFTER PVC DESCRIPTION wood and black ç terminated at Buy rot rue esoo 784 medium. DATA 4334 DESCRIPTION OF to medium dium. SILT loosa. HOURS Ten. Completion Data 01/13/87 ဝှင် fine rine gravelly organics 2 fragments pup ABBREVIATIONS silty dense feet MATERIAL Burses ž silty WASH BORING FROM AUGER CLAY ORILLING installed ٩ ONAS SAND DATA HOLLOW STEM ם שורר LOGGER UNIT DRY WEIGHT SPT VALUE 25 SAMPLES GMOTMCHNOCOGY **∆-**00/2 STANDARD [0g ة-SHEAR STRENGTH, 1st St. Louis, Missouri PENETRATION RESISTANCE (ASTH 0 1908) - BLOWS PER FOOT WATER CONTENT, % **M** DG-3 O~9u/2 BORING BORING Grain Size Analysis Grain Grain Size Analysis Grain S 0-9V Analysis ě-누 PLATE 11 NO. 0 / 10 / 00 1 MO'0\70\02T #### APPENDIX C Photo Documentation of Site ### ECOLOGY & ENVIRONMENT, INC. PHOTOGRAPHIC RECORD SITE == No.: C-1 Subject Big River with mine tailing dust rising from the pile. ### Photographor Robert Overfelt #### Winopp Gene Gunn #### Dato/ Timo January 25, 1988 1030 hrs #### Diroction North Mo.: C-2 Subjoct Area where mine tailings slope are in contact with the Big River Robert Overfelt Gene Gunn Dato/Timo January 25, 1988 1030 hrs Diroction North ### ECOLOGY & ENVIRONMENT, INC. PHOTOGRAPHIC RECORD SITE | No. | • | U- | 3 | |-----|-----|----|---| | Sub | ioc | ŧ | | Gap A from edge of River after filled ### Photographor Bob Overfelt Withoop Gene Gunn Dato/Timo Jauary 25, 1988 on the hrs West No.: C-4 Subject Wind fencing Box configuration #### Photographor Bob Overfelt WILLOSS Gene Gunn Dato/11mo January 25, 1988 1100 hrs Direction Southeast ### ECOLOGY & ENVIRONMENT, INC. PHOTOGRAPHIC REGORD SITE | No.: | C-5 | |---------|------| | Subject | Wind | Fencing showing tailings accumulation. #### Photographor Bob Overfelt Witnoos Gene Gunn Dato/ 11mo January 25, 1988 1100 hrs Direction Southwest No.: C-6 Subject Trees Planted on north side. ### Photographor Bob Overfelt : **@Bon11W** Gene Gunn Dato/Time January 25, 1988 1100 ohrs West | | | 1355 <u>-</u> 430 | |------|--|--| | 1 | | | | | | | | | | | | | | Age of the second | | | | | | | The spirit of th | 15 15 15 15 15 15 15 15 15 15 15 15 15 1 | | | The state of s | n Rank Marija (n. 1907). | | - | | Although gold in | | | | | | | | . व्यक्तिकारी सम्बद्धाना वर्षा | | | | | | | | า
ที่สโปปสัญญี่สุดพลเล | | • | | | | | | ngality. A character and a con- | | • •- | | en en en tradición de la comita d
La comita de la comi | | 1 | The contract of the second of the contract of the second o | | | | | | | | | | ### ECOLOGY & ENVIRONMENT. INC. PHOTOGRAPHIC RECORD SITE No. C-7 Trees planted on north side. Photographor Bob Overfelt Winoss Gene Gunn Dato/17mo January 25, 1988 1100 hrs Southwest Subject C-8 "H" Gap filled Photographor Bob Overfelt Wilnoss Gene Gunn Dato/ 11 mo January 25, 1988 112<u>Birben</u> Northeast | | ı | |--|---| ## ECOLOGY & ENVIRONMENT, INC. PHOTOGRAPHIC RECORD SITE No.: C- Trees & grass planted on west side of pile near gap I Photographo Bob Overfelt Wilnops Gene Gunn Dato/ fimo January 25, 1988 1130 hrs Northeast Mo.: C-10 Subject Berm with Gap "I" drainage pipe. Photographor Bob Overfelt Witness Gene Gunn Dato/Timo January 25, 1988 1200 hrs. ____ North ### ECOLOGY & ENVIRONMENT, INC. PHOTOGRAPHIC RECORD SITE No.: C-11 Subject Gap "I" drainage pipe from Big River. Photographor Bob Overfelt **Witnoss** Gene Gunn Dato/11mo January 25, 1988 1230 hrs. Diroction East No.: C-12 Subject West side where tailings meet river. Photographor. Bob Overfelt Winoso Gene Gunn Dato/ 11mo January 25, 1988 1245 hrs. Diroction Southwest ### PHOTOGRAPHIC RECORD SITE No.: C-13 Subject Cut back of river where tailings meet river. Photographor Bob Overfelt Wilnooo Gene Gunn Dato/11mo January 25, 1988 1250 hrs. Diroction Southeast No.: C-14 Subject Original drainage structure. Photographor Bob Overfelt Wilmoss Gene Gunn Dato/Timo January 25, 1988 1300 hrs. Southwest ### ECOLOGY & ENVIRONMENT, INC. PHOTOGRAPHIC RECORD SITE ... No.: C-15 Subject Gap "E" showing tailings and bedrock. ### Photographor Bob Overfelt Witnoop Gene Gunn Dato/Timo January 25, 1988 1320 hrs. Diroction Southeast Mo.: C-16 Gap "E" draining tailings toward river. Photographor Bob Overfelt Wilnoso Gene Gunn Dato/11mo January 25, 1988 1325 hrs. Diroction West ### ECOLOGY & ENVIRONMENT, INC. PHOTOGRAPHIC RECORD SITE No.: C-17 Subject Dam above Gap "E" Photographor Bob Overfelt WILLOOD Gene Gunn Dato/Timo January 25, 1988 1330 hrs Diroction Southwest <u>No.:</u> Subject Photographor Withooo Dato/Time Direction END OF PHOTOGRAPHIC RECORD ### APPENDIX D Sample Results Heavy Metals in Desloge Tailings Pile · Sandana ### CONCENTRATIONS OF LEAD, CADMIUM, AND ZINC FROM SAMPLES TAKEN AT THE BIG RIVER-DESLOGE TAILINGS PILE | Sample | • | | | |--------------------|--------------------|---------------|------------------| | No. | РЬ | Cd | Zn | | .0900 | 1670 | 37. .8 | 1670 | | D901 | 1540 | 38.9 | 1700 | | ~-D902 | 1420 | 27.4 | 1150 | | 0903 | 1190 | 11.7 | 330 | | _ D904 | 1420 - | 54.8 | 2380 | | D905 | 2590 | 30.2 | 1320 | | - D 9 06 | 3840 | 34.9 | 1750 | | D907 | 3560 | = 5 26.5 | 1380 | | _D908 | , 9 70 | 6.8~ | 875 | | D909 | 1250 - | | 950 | | ~~D910 | 1800 | 15.7 | 1040 | | D911 | 1360 | 25 | 1080 | | ±.0912 | 2310 | 40.0 | 1890 | | D913 | 4470 | 18.3 | 821 | | D915 | 1530 | 13.8 | 680 | | D916 | 826- | 15.7 | 531 | | -D917 | 3140 | -31.7 | 1440 | | D918 | 1020 | 17.4 | 637 | | D919 | 958 | 21.4 | 798 | | D920 | 2710 - | | 1380 | | -D921 | 1570 | 8.0 | 511 | | · 0922 | 997 | 7.0 | 406 | | D923 | 835 | 8.0 | 373 | | D924 | 896 | 7.5 | 437 | | D925 | 1310 - | 9.8 — | 373 | | D926 | 1080 | 13 | 297 | | D927 | 983 | 11.8 | 354 | | D928 | . 877 | 16.5 | 518 | | D929 | 964 | 13.8 | 373 | | _D930 | 1380 - | 15.0 — | 582 | | D931 | 1010 | 18.5 | 698 | | _D932 | 1150 | 21.5 | 816 | | D933 | 951 | 11.6 | 233 | | D934 | 1620 | 20.5 | 840 | | D935 | 5530 - | 46.9 | 404 | | - D936 | 1570 | 24.2 | 933 | | _ D937 | 1400 | 8.7 | 525 | | D938 | 1330 | 19.8 | 733 | | D939 | 1140 | 21.5 | 783
1300 | | 0940 | 2380 -
1120 | 19.2 | 1380 | | D941
D942 | 1120
1410 | 9.2 | 558
716 | | D942 | 4320 | - 68.2 | 715
3500 | | D943
D944 | 1800 | | 3580
1310 | | D944 | 1710 - | 15.8
21.1 | 1210 | | 1743 | 1/10 - | | 1090 | FROM: WIXON, B.G., ETAL. UNIVERSITY OF MISSOURI-ROLLA, A STUDY OF CHAT. AND TAILINGS FROM THE OLD LEAD BELT OF MISSOURI FOR AGRICULTURAL LIMESTONE. DECEMBER, 1983. | | Zn | | | | | | | 560 | 8 | 5 | 5 | 5 | 72 | 8 | | 8 | 9 | 9 | 2 | 78 | 2 | 8 | Ξ | Ω̈́ | 2 | ŏ | Ö | $\tilde{\omega}$ | | σ | |---------------|----------------|-----|-----------|-----------|-------|----|----|------|------|----------|-------|----------|----|---|------|----|-----|----|-----------|-----------|----|----------|-------|----------|----------|----|------|------------------|----|---------------| | il Conc; ug/g | p ₀ | | Τ. | | -18.1 | S | | - | 24.5 | 31.4 | .30.7 | က | ~ | - | 35.8 | ο, | æ | ج | J. | m, | 7 | 7 | Š | 8 | ė. | 2 | 44.5 | <u>.</u> | - | ω | | Meta | q _d | Ō | 93 | 44 | 38 | 73 | 54 | 1490 | 0 | | 78 | 36 | 20 | 6 | 88 | 83 | 95 | 41 | 18 | 13 | 86 | 3 | Ξ | 61 | 82 | 24 | 07 |]] | 13 | 69 | | Sample | No. | l ≍ | \approx | \approx | 7 | = | - | 0952 | ~ | <u>.</u> | Ξ. | <u> </u> | ~ | ~ | 3 | = | ₹ : | ~ | \approx | \approx | ₩: | <u>ب</u> | 9 | \geq
1 | <u> </u> | | _ | <u> </u> | / | $\overline{}$ | r. S ļ.